Digital system design 17EE35

MODULE 2

Introduction to Combinational Logic Circuits and Ad vanced Combinational
Logic Circuits

Structure

2.1 Objevtive

2.2Introduction

2.3General approach

2.4Decoders-BCD decoders, Encoders.

2.5Digital multiplexers-using multiplexers as Booleanction generators & Design methods of
building blocks of combinational logics

2.6 Adders and Subtractors-Cascading full adders

2.7Look ahead carry

2.8Binary comparators. .

2.90utcome

2.10 Future Readings

2.1Objevtive

» Ability to understand, analy- % ﬁasini\t@ysmmbmatlonal circuit.

2.2Introduction

The complex combinational cwcw es‘gn&nlng fundamental circuits, this
fundamental circuits mean the we have c dacabder, full adder, the decoder. Now, we
will read how the combinational circuit Og/be igeed using another fundamental circuits
called multiplexer 0

2.3General approach % >

Combinational Circuits A combinatienal circuit casts of logic gates whose outputs, at any
time, are determined by combining the values ofitipeits. A combinational circuit consists of

logic gates whose outputs, at any time, are detethipy combining the values of the inputs. For
n input variables, there are 2 n possible binappircombinations. For n input variables, there
are 2 n possible binary input combinations. Fohdaioary combination of the input variables,

there is one possible binary value on each outpoit. each binary combination of the input

variables, there is one possible binary value @h eatput.

1. Design a combinational circuit that will multiply two two-bit binary values

Solution:
1. input variables(AAo,B1,Bo)
output variablesgiPs,Pi,Py)
Construct a truth table
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Inpuis Outputs
A, Ag B, B, Py P, P, Py
o 0 1] o 0 0 0 Q
0 0 a 1 0 0 o] 0
4] 0 1 o 0 0 0 o
Q 0 1 1 0 0 0 o
a 1 0 o 0 0 o 0
o 1 0 1 0 0 o 1
o] 1 1 a o o 1 4]
0 1 1 1 0 o 1 1
1 o} o 0 0 Qo 0 4]
1 o o 1 0 o 1 4]
1 o 1 o 0 1 (4] 4]
1 o 1 1 u} 1 1 o
1 1 o 0 0 o o 0
1 1 [d] 1 0 o 1 1
1 1 1 0 o 1 1 0
1 1 1 1 1 0 0 1

The output SOP equations ar:
Ps=f(A1,A0,B1,B0)=>.(15)
P,=f(A1,A0,B1,B0)=>(10,11,14
P1=f(A1,A0,B1,B0)=>.(6,7,9,11,13,1¢
Po=f(A1,A0,B1,B0)=>.(5,7,13,15

The individually simplified equations are
Ps=A1A,B1Bg N
P>=A1A0'B1+A1B1Bo’
P:=A{/AB1+AB1By+A 1B1'B
Po=AoBo
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2.4Decoders-BCD decoders, Encoders.

A Decoder is a multiple input ,multiple output logiircuit. The block diagram of a decoder is as

shown below.
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The most commonly used decoder is a n 2tdezoder which ha n inputs antQutput lines .

3-to-8 decoder logic diagram
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In this realization shown above the three inpuéesassigned goi,and %, and the eight outputs
are 4to Z;.

Function specifc decoders also exist which havetlesn 2 outputs . examples are 8421 code
decoder also called BCD to decimal decoder. Desoithat drive seven segment displays also
exist

Realization of boolean expression using Decoder an@R gate

We see from the above truth table that the outpptessions corrwespond to a single minterm.
Hence a n —to"2ecoder is a minterm generator. Thus by using @&R8sgn conjunction with a a
n —to 2' decoder boolean function realization is possible.

P1: to realize the Boolean functions given below usiegoders...
*F1=m(1,2,4,5)

F2=¥m(1,5,7)

g-t-H
pEc U
1
2
Wy i 0
X 1 3
Xz 2 4
J
]
7

Realisation of boolean expressions
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P2: A 3-to-8 Decoder constructed

Al

Al

Al

P3: Design a binary 3-bit adder with a 74xxx138 antlAND gates.

Encoder

404
Decoder
20
2I

EN ABLE

— Do

D1

— DI

—— D03

I40 -4

Decoder
0

2

2
EN ABLE

—— 04

—— 05

—— D06

—— 07

o Weg

%

S=fxx,y,z=Ym@,2,4,7%,C f(X,Y,Z2)Ym(@3,5,6,7

7

mTr

Uz

Itis a inverse of decoder having 2”n input and n otput.

1¢

inpuis
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P4:Decimal-to-BCD Encoder (74xxx147)

Inputs Outputs
2 3 4 5 6 7 3 9 D C B A
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
x [0 1 1 1 1 1 1 1
X x [0 1 1 1 1 1 1
X X x [0 1 1 1 1 1
X X X x [0 1 1 1 1
X X X X x [0 1 1 1
X X X X X x [0 1 1
X X X X X X x [0 1
X X X X X X X X 0

+

v

-

o}
A
ANA—
ANA—H
ANAN—
ANA—
AAA—
WA—

o]

o

o)

O

o]

o)

o]

o]

nglkgk LP (L% g% LFJ)F

-l

priority encoder

Several possible events may occur i Industyisiem, and you want to identify an event
and assign and transmit a code to@ﬁeont?blhasibd on some priority.
Inputs Outputs

D3 | D2 | D1 | DO | A1 | AO | IV
0 0 0 0
0 0 0 1
0 0 1 X
0 1 X
1 X X
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2.5Digital multiplexers-using multiplexers as Booleanfunction generators. & Design
methods of building blocks of combinational logics.

Multiplexers also called data selectors are andwfer devices with a wide range of applications

in microprocessor and their peripherals design. fiflewind diagrams show the symbol and

truth table for the 4-to —1 mux.

Lmlerl h&

ix i [
Senrieh _:"‘x % 2
Sewrp b —=© K“H._,—u_-,r"'_._ i § ¢ — .l._
':l!lll.":—'.:' Eamhie cu% .

Qo Fa SRS

Select
P1: 4-to-1 Line Multiplexer ’Q
— " g-to-1 E S1 %S0 o In T2 I3 f
MUX

— 1 L4 ] X X X X X X i ]

1 o o O X X X o

S L f— 1 o o 1 X X X 1
T 1 o 1 X 0 x x L8]

1 o 1 x 1 x X 1

—E 51 So 1 1 O X X 0O X 4]

1 1 0 X X 1 X 1

| I 1 1 1 X X X O o

1 1 1 X X X 1 1

A g4-to-1 line multiplexer symbol. CﬂmprESSEd Truth table
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P2:Consider the function F(A,B,C,D)=>(1,3,4,11,12,13,14,1%5)

This function canbe implemented with an 8-to-kIMUX (see Figure 7) A, B, and C are
applied to the select inputs as follows=AS2 , B= S1, C= SO

A B C DI|F
0O 0 0 0 0 p_p
o o o 1 1
0O o 1 0. o
F=D
o o 1 11| 1
o 1 o o1 -_s
o 1 o 1|0
o 1 1 0 0
F=0
s 1 1|l 0
i 0 0 o|0 -_,
1 o o 1]l o0
i O 1 0| o
=1
. 1] 1
1 1 0O O] 1 B
1 1 o 1| 1 = Q,a
1 1 1 o] 1 Q/
101111 gé,

~>

Demultiplexers

* Perform the opposite function of multiplexers

* Placing the value of a single data input onto oinne multiple data outputs
» Same implementation as decoder with enable

» Enable input of decoder serves as the data iopaihe demultiplexer
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1= 4
DEMUX

P1: A 1-to-4 line Demux

The input E is directed to one of the outputs,mecied by the two select lines S1 and SO. DO =
Eif S1SO=06>D0=S1"SO' E

D1=EifS1S0=0&D1=S1'SOE
D2=Eif S1S0=16> D2 =S1 S0 E
D3=EifS1S0=1»D3=S1SO0E

A careful inspection of the Demux circuit showsttltais identical to a 2 to 4 decoder with

enable input.

E AE_DQ ‘“.“0 \_ 4 &
ey s

LH

I ¢
Decimal | Enable Inputs Outputs
value
E Al | Ay Dy |[Dy |Dy |Ds
0 X X 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 1 0 1 0 0
2 1 1 0 0 0 1 0
3 1 1 1 0 0 0 1

Table for 1-to-4 line demultiplexer

Dept.EEE, ATMECE, Mysuru
34



Digital system design 17EE35

2.6 Adders and SubtractorsCascading full adders
Consider adding two binary numbers toget

0 1 0 1
+0 +0 +1 +1

00 01 01 10
e

carried bit

We sedhat the bit in the "two's" column is generated wkiee addition carried over. A h-
adder is a circuit which adds two bits together angbuts the sum of those two bits. The -
adder has two outputsumanc carry. Sum represents the remainder o integer division
A+B/2, while carry is the result. This can be exgsed as follows:

o 7] AR g i}
N —
- E_a g o a o ) o
o 3 1 1 o
D_. c T s | Q/ =
1 & 7

<
S=AxorB %&

Full Adder:

Half-adders have a major limitatio %t they carawmept a carry bit from a previous sts
meaning that they cannot be chal tcer to add multbit numbers. However, the two outy
bits of a halfadder can also represent the result A+B=3 as sudincamy both being hig

As such, the fulldder can accept three bits as an input. Commondy bit is referred to as tl
carry-in bit. Full adders can be cascaded to produce addersyohwamber of bits by dai-
chaining the carry of one output to the input @& tiex

The full-adder is usually shown as a single unit. The sutpubus usually on the bottom on t
block, and the carrgut output is on the left, so the devices can b&ngd together, most
significant bit leftmost:

| |
..

Logic Symbol of Full adder
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Ripple Carry Adder:

A ripple carry adder is simply several full addemnected in a series so that the carry must
propagate through every full adder before the amdis complete. Ripple carry adders require
the least amount of hardware of all adders, but #ne the slowest.

The following diagram shows a four-bit adder, whaids the numbers A[3:0] and B[3:0], as
well as a carry input, together to produce S[3r@] the carry gutput

Propagation Delay in Full Adders ‘90
a

Real logic gates do not react instantaneously ¢oirtbuts, and therefore digital circuits have a
maximum speed. Usually, the delay through a digitauit is measured in gate-delays, as this
allows the delay of a design to be calculated féfednt devices. AND and OR gates have a
nominal delay of 1 gate-delay, and XOR gates hadelay of 2, because they are really made up
of a combination of ANDs and ORs.

A full adder block has the following worst case agation delays:

« FromA orB; to Ci;1: 4 gate-delays (XOR> AND — OR)
+  FromA orB; to S: 4 gate-delays (XOR> XOR)

« From(C; to Ci;1: 2 gate-delays (AND~» OR)

+  FromC; to S: 2 gate-delays (XOR)

Because the carry-out of one stage is the nexiid,ithe worst case propagation delay is then:

« 4 gate-delays from generating the first carry digAgB, — C,).
- 2 gate-delays per intermediate staGe¢ Ci+1).
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« 2 gatedelays at the last stage to prce both the sum and ca-out outputs C..
1— CyandS,.).

So for am-bit adder, we have a total propagation d¢t, of:

Cita

Lol TAI TR
—l S et ind=t

t,=4+2(n—2)+2=2n+2

This is linear im, and for a 3-bit number, would take 66 cycles to complete calculation.
This is rather slow, and restricts the word_lengtour devicQ)omewhat. We would like to fi

ways to speed it up. . %
2.7Look ahead carry &
A fast method of adding numbersys calle c-% ad. This method doesn't require
carry signal to pppagate stage by stagegCausi bottleneclealhst uses additional logic

expedite the propagation and generatiorQi%arfgrrination, allowing fast addition at tt
expense of more hardware.

"
In a ripple adder, each stage cqgsgszrthe -in signal,Ci, with the input A andB; and
generates a carry-out sigrial; accordlingly. In a carrieokahead adder, we define two n

functions.

\

The generate functiol;, indicates whether that stage causes a -out signalCito be
generated if no carriyr signal exists. This occurs if both the adderm#&n a 1 in that b

Gi:Ai.Bi

The propagate functio®;, indicates whether a ca-in to the stage is passed to the c-out for
the stage. This occurs if either the addends hdvinthat bit

Pi=A; +Bj

Note that both these values can be calculated fremnputs in a constant time of a single ¢
delay. Now, the carrgut from a stage occurs if that stage generatesrg (G; = 1) or there is a
carrydin and the stage propetes the carryR;-C; = 1)
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Cim=AiBi+AiC;+B;C;

Cin1i=AiB;i+C;(Ai+Bj)

Ci1 =G +P;C;

Truth table
Aj Bj Ci Gi P Ci+1
0 D 0 D 0 0
0 D 1 D 0 0
0 1 0 D 1 0
0 1 1 D 1 1
1 D 0 D 1 0
1 D 1 D 1 1
1 1 0 1 1 1
1 1 1 1 1 1

cip1 = G + FPig Q;

ci+1 = Gi + Fi (Gio1 + FPi—1ci-1)

Civ1 = Gi + PiGi_y + PP,y (C | %2’
Cint = \./{
Cit+1 :Gt PG+ PP 1G22 [ 2Giis + ...+ PiPiy---PiPc

Note that this does not require the c-out’ﬂ{ Is from the previous stages, so we dan'¢ o
wait for changes taipple through th€ @ircuit. In fact, a given stagearry signal can be
computed once the propagate an ate sigealeaty with only two more gate delays (
AND and one OR). Thus the ca-out¥or a given stage can be calculated in consibae, and
therefore so can the sum.

The S, P, andG signals are all generated by a circuit called atlglgfull adder" (PFA), which it
similar to a full adder.

For a slightly smaller circuit, the propagate sigren be taken as the output of the fXOR
gate instead of using a dedicated OR gate, bedhbsth A and B are asserted, the gene
signal will force a carry. However, this simplifiaan means that the propagate signal will t
two gate delays to produce, rather than just
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A carry lookahead adder then conté n PFAs and the logic to produce carries from thees
propagate and generate sigr

A A G S

Cs? C; C1
PFA 3 ——I PFA 2 PFA 1 PFA O [~ Co

P3| G3 153 Pa| Gz 152 PL &1 151 Po| Go 15D

.
g

Two numbers can therefore be added in constant (), of just 6 gate delays, regardles:
the lengthn of the numbers. However, tl requires AND and OR gates with ug ninputs. If
logic gates are available with a limited numberirgfuts, trees will need to be constructec
compute these, and the overall computation timedarithmic, O(Inf)), which is still muct
better than thénear time for ripple addel Q/

\ &
2.8Binary comparators
Another common and very useful cegnbinatidona igult is that of theDigital
Comparator circuit. Digital or Binary Cey par re madefrgm
standard AND, NOR anNOT gates that co tk;ligital signals present at their in

terminals and produce an output dep &; pondhdition of those inpul
at

Another common and very useful ional lagicuit is that of theDigital
Comparator circuit. Digital or Binary Comparators are ne up from

standard AND, NOR anNOT gates that compare the digital signals preseihteat input
terminals and produce an output depending upondhdition of those inpult

B )
' L_,.-*'- | | _.:_‘:— =hE =D A=l
= e
} D— = da

L — -
o — Y —
R e

For example, along with being able to add and ssbibinary numbers we neto be able to
compare them and determine whether the value aft A is greater than, smaller than or eq
to the value at input Btc. The digital comparator accomplishes this usiegeral logic gates
that operate on the principles Boolean Algebra There are two main types Digital
Comparator available and these a
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« 1. Identity Comparator — ddentity Comparators a digital comparator that has only one
output terminal for when A = B either “HIGH” A=B 1 or “LOW” A=B=0

« 2. Magnitude Comparator -Magnitude Comparatois a digital comparator which has
three output terminals, one each for equality, AB=greater than, A>B and less
than A<B

The purpose of Bigital Comparator is to compare a set of variables or unknown nusjder
example A (A1, A2, A3, .... An, etc) against thatao€onstant or unknown value such as B (B1,
B2, B3, .... Bn, etc) and produce an output condiborflag depending upon the result of the
comparison. For example, a magnitude comparatotwof 1-bits, (A and B) inputs would
produce the following three output conditions witsempared to each other.

A>B, A=B, A<B
Which means: A is greater than B, A is equal toaRd A is less than B

This is useful if we want to compare two variabdéesl want to produce an output when any of
the above three conditions are achieved. For ex@ampbduce an output from a counter when a
certain count number is reached. Consider the siiyllit comparator below.

1-bit Digital Comparator Circuit

™ N
A > .
_.-'/" J"‘-‘_
[ \— ™
1
R Do /
L —_—

Then the operation of a 1-bit digital paratoglvsen in the following Truth Table.

Digital Comparator Truth Table

Inputs | Outputs

B A|lA>B|A=B|A<B
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1(1(0 1 0

You may notice two distinct features about the carafor from the above truth table. Firstly, the
circuit does not distinguish between either two t"two “1™s as an output A = B is produced

when they are both equal, either A = B = “0” or AB== “1". Secondly, the output condition

for A = Bresembles that of a commonly availablgido gate, the Exclusive-NOR or Ex-

NOR function (equivalence) on each of the n-bitsrgj: Q = A@ B

Digital comparators actually use Exclusive-NOR gatgthin their design for comparing their

respective pairs of bits. When we are comparing livmary or BCD values or variables against
each other, we are comparing the “magnitude” ofehealues, a logic “0” against a logic “1”

which is where the terrilagnitude Comparator comes from.

As well as comparing individual bits, we can designger bit comparators by cascading
together n of these and produce a n-bit comparjatr as we did for the n-bit adder in the
previous tutorial. Multi-bit comparators can be swacted to compare whole binary or BCD
words to produce an output if one word is largguag to or less than the other.

(“nibbles™) are compared to each othe

nitude ator. Here, two 4-bit words
)] r t output with one word connected
to inputs A and the other to be com\*/ ¥ to input B as shown below.
4-bit Magnitude Comparator CO )
Binary géry. ¢
buts B

S

Ap A Az Aa 4 By By B

A very good example of this is thes A

(LsB)  (MSB) (LSB)  (MSB)
A=B |—= _
4-bit Magnitude A=B |— Comparison
Comparator AsB |_a Outputs

Some commercially available digital comparatorshsas the TTL 74LS85 or CMOS 4063 4-bit
magnitude comparator have additional input ternsitiaét allow more individual comparators to
be “cascaded” together to compare words larger 4khits with magnitude comparators of “n”-

bits being produced. These cascading inputs areexted directly to the corresponding outputs
of the previous comparator as shown to comparé 8y ven 32-bit words.
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P —
Word A A —=
LSB inputs Az ——m
Py —— 4-hit
Magnitude
L5Binputs | Comparator
By ——=
WordB  Bi —
LSBinputs Bz —»
By ——
A<B -
A=B »
B it
Ma gnitude
Ag » Comparator
Word A As >
MSE inputs A5 -
MSE inputs @Q
B4
Word B Bs —* E-hit
MSEB inputs  Bg B —= Word
B+ | Outputs

O
When comparing large binary or. numbers like themmple above, to save time the
comparator starts by comparing theMighest-ordgiMbB) first. If equality exists, A = B then it

compares the next lowest bit and so on until itihea the lowest-order bit, (LSB). If equality
still exists then the two numbers are defined asgoequal.

If inequality is found, either A > B or A < B theelationship between the two numbers is
determined and the comparison between any addititoaer order bits stop®igital
Comparator are used widely in Analogue-to-Digital convertg/8DC) and Arithmetic Logic
Units, (ALU) to perform a variety of arithmetic aagions.
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2.90utcome
» Can create a appropriate truth table from the desciption of combinational logic
function.

» Able to design any logic circuit using MUX, DEMUX, encoders and decoders
based on the application such that the gates useda circuits are reduced.

2.10 Future Readings
http://nptel.ac.in/courses/117105080/
https://www.youtube.com/watch?v=VnZLRrJYa2l
“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John ¥arbrough, 2011 edition.

) &Q’
Q/ ‘.\

O
,Q ?
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MODULE 2

Introduction to Combinational Logic Circuits and Ad vanced Combinational
Logic Circuits

Structure

2.1 Objevtive

2.2Introduction

2.3General approach

2.4Decoders-BCD decoders, Encoders.

2.5Digital multiplexers-using multiplexers as Booleanction generators & Design methods of
building blocks of combinational logics

2.6 Adders and Subtractors-Cascading full adders

2.7Look ahead carry

2.8Binary comparators. .

2.90utcome

2.10 Future Readings

2.1Objevtive

» Ability to understand, analy- % ﬁasini\t@ysmmbmatlonal circuit.

2.2Introduction

The complex combinational cwcw es‘gn&nlng fundamental circuits, this
fundamental circuits mean the we have c dacabder, full adder, the decoder. Now, we
will read how the combinational circuit Og/be igeed using another fundamental circuits
called multiplexer 0

2.3General approach % >

Combinational Circuits A combinatienal circuit casts of logic gates whose outputs, at any
time, are determined by combining the values ofitipeits. A combinational circuit consists of

logic gates whose outputs, at any time, are detethipy combining the values of the inputs. For
n input variables, there are 2 n possible binappircombinations. For n input variables, there
are 2 n possible binary input combinations. Fohdaioary combination of the input variables,

there is one possible binary value on each outpoit. each binary combination of the input

variables, there is one possible binary value @h eatput.

1. Design a combinational circuit that will multiply two two-bit binary values

Solution:
1. input variables(AAo,B1,Bo)
output variablesgiPs,Pi,Py)
Construct a truth table
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Inpuis Outputs
A, Ag B, B, Py P, P, Py
o 0 1] o 0 0 0 Q
0 0 a 1 0 0 o] 0
4] 0 1 o 0 0 0 o
Q 0 1 1 0 0 0 o
a 1 0 o 0 0 o 0
o 1 0 1 0 0 o 1
o] 1 1 a o o 1 4]
0 1 1 1 0 o 1 1
1 o} o 0 0 Qo 0 4]
1 o o 1 0 o 1 4]
1 o 1 o 0 1 (4] 4]
1 o 1 1 u} 1 1 o
1 1 o 0 0 o o 0
1 1 [d] 1 0 o 1 1
1 1 1 0 o 1 1 0
1 1 1 1 1 0 0 1

The output SOP equations ar:
Ps=f(A1,A0,B1,B0)=>.(15)
P,=f(A1,A0,B1,B0)=>(10,11,14
P1=f(A1,A0,B1,B0)=>.(6,7,9,11,13,1¢
Po=f(A1,A0,B1,B0)=>.(5,7,13,15

The individually simplified equations are
Ps=A1A,B1Bg N
P>=A1A0'B1+A1B1Bo’
P:=A{/AB1+AB1By+A 1B1'B
Po=AoBo

-]

a &

UUJ@M
¥
?Q

:

]

abhb n:l-:.r},t:.: I EEnbk?

Fg
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2.4Decoders-BCD decoders, Encoders.

A Decoder is a multiple input ,multiple output logiircuit. The block diagram of a decoder is as

shown below.

irpprun s

—_—  IFELC

Aury ma-Las-Em T laeaas
lecapclesr sy rnleosl.

sy ma

The most commonly used decoder is a n 2tdezoder which ha n inputs antQutput lines .

3-to-8 decoder logic diagram

A F-tar-F alocoslasnr-
Bawppics elizngeraunmy

\
'al:_'u. o
03

Tanpruats TPt

Mw AMas Ma Foan e e g R Fgm Eaw o
& 4%  4» I ¥ &% &% &% IF OB &
L& L& 1 L8] | i dF o I» a»
¥ i iw L] L] i ik i ¥ a»
[ w ] i 1 L& ] i &b i ¥ £ LF a3
i a3 4 iF 43 «4F €3 A LB LB &
1 s 1 €8 €3 €% A% d¥ L s S
| L L& ] L8] a &% I d¥ L& ] i L& ]
| i b | L8 ] 4 d» AF ¥ £ LF 7
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In this realization shown above the three inpuéesassigned goi,and %, and the eight outputs
are 4to Z;.

Function specifc decoders also exist which havetlesn 2 outputs . examples are 8421 code
decoder also called BCD to decimal decoder. Desoithat drive seven segment displays also
exist

Realization of boolean expression using Decoder an@R gate

We see from the above truth table that the outpptessions corrwespond to a single minterm.
Hence a n —to"2ecoder is a minterm generator. Thus by using @&R8sgn conjunction with a a
n —to 2' decoder boolean function realization is possible.

P1: to realize the Boolean functions given below usiegoders...
*F1=m(1,2,4,5)

F2=¥m(1,5,7)

g-t-H
pEc U
1
2
Wy i 0
X 1 3
Xz 2 4
J
]
7

Realisation of boolean expressions
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P2: A 3-to-8 Decoder constructed

Al

Al

Al

P3: Design a binary 3-bit adder with a 74xxx138 antlAND gates.

Encoder

404
Decoder
20
2I

EN ABLE

— Do

D1

— DI

—— D03

I40 -4

Decoder
0

2

2
EN ABLE

—— 04

—— 05

—— D06

—— 07

o Weg

%

S=fxx,y,z=Ym@,2,4,7%,C f(X,Y,Z2)Ym(@3,5,6,7

7

mTr

Uz

Itis a inverse of decoder having 2”n input and n otput.

1¢

inpuis
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Encoder
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P4:Decimal-to-BCD Encoder (74xxx147)

Inputs Outputs
2 3 4 5 6 7 3 9 D C B A
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
x [0 1 1 1 1 1 1 1
X x [0 1 1 1 1 1 1
X X x [0 1 1 1 1 1
X X X x [0 1 1 1 1
X X X X x [0 1 1 1
X X X X X x [0 1 1
X X X X X X x [0 1
X X X X X X X X 0

+

v

-

o}
A
ANA—
ANA—H
ANAN—
ANA—
AAA—
WA—

o]

o

o)

O

o]

o)

o]

o]

nglkgk LP (L% g% LFJ)F

-l

priority encoder

Several possible events may occur i Industyisiem, and you want to identify an event
and assign and transmit a code to@ﬁeont?blhasibd on some priority.
Inputs Outputs

D3 | D2 | D1 | DO | A1 | AO | IV
0 0 0 0
0 0 0 1
0 0 1 X
0 1 X
1 X X

Dept.EEE, ATMECE, Mysuru
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0l 0l ]
~, DID0 Ee— 0100 e— o100 —
paD2fl 00 M 11 10 0302 moon'n on 0302 moo0n
1 1 1 1 1 o 1 1 1 1 m ] 1 1
0 , ) ) , ] , ) ) ) (] . : . ,
- - 02 - | - |
1" 0 1 It " 0 1 i " It 1 I It
03 03 03
10 1 1 1 It 1 1 1 1 I 1" 1 1 0 It
D0 H 00 Dl
Al = Al = V=

2.5Digital multiplexers-using multiplexers as Booleanfunction generators. & Design
methods of building blocks of combinational logics.

Multiplexers also called data selectors are andwfer devices with a wide range of applications

in microprocessor and their peripherals design. fiflewind diagrams show the symbol and

truth table for the 4-to —1 mux.

Lmlerl h&

ix i [
Senrieh _:"‘x % 2
Sewrp b —=© K“H._,—u_-,r"'_._ i § ¢ — .l._
':l!lll.":—'.:' Eamhie cu% .

Qo Fa SRS

Select
P1: 4-to-1 Line Multiplexer ’Q
— " g-to-1 E S1 %S0 o In T2 I3 f
MUX

— 1 L4 ] X X X X X X i ]

1 o o O X X X o

S L f— 1 o o 1 X X X 1
T 1 o 1 X 0 x x L8]

1 o 1 x 1 x X 1

—E 51 So 1 1 O X X 0O X 4]

1 1 0 X X 1 X 1

| I 1 1 1 X X X O o

1 1 1 X X X 1 1

A g4-to-1 line multiplexer symbol. CﬂmprESSEd Truth table
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P2:Consider the function F(A,B,C,D)=>(1,3,4,11,12,13,14,1%5)

This function canbe implemented with an 8-to-kIMUX (see Figure 7) A, B, and C are
applied to the select inputs as follows=AS2 , B= S1, C= SO

A B C DI|F
0O 0 0 0 0 p_p
o o o 1 1
0O o 1 0. o
F=D
o o 1 11| 1
o 1 o o1 -_s
o 1 o 1|0
o 1 1 0 0
F=0
s 1 1|l 0
i 0 0 o|0 -_,
1 o o 1]l o0
i O 1 0| o
=1
. 1] 1
1 1 0O O] 1 B
1 1 o 1| 1 = Q,a
1 1 1 o] 1 Q/
101111 gé,

~>

Demultiplexers

* Perform the opposite function of multiplexers

* Placing the value of a single data input onto oinne multiple data outputs
» Same implementation as decoder with enable

» Enable input of decoder serves as the data iopaihe demultiplexer

Dept.EEE, ATMECE, Mysuru
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1= 4
DEMUX

P1: A 1-to-4 line Demux

The input E is directed to one of the outputs,mecied by the two select lines S1 and SO. DO =
Eif S1SO=06>D0=S1"SO' E

D1=EifS1S0=0&D1=S1'SOE
D2=Eif S1S0=16> D2 =S1 S0 E
D3=EifS1S0=1»D3=S1SO0E

A careful inspection of the Demux circuit showsttltais identical to a 2 to 4 decoder with

enable input.

E AE_DQ ‘“.“0 \_ 4 &
ey s

LH

I ¢
Decimal | Enable Inputs Outputs
value
E Al | Ay Dy |[Dy |Dy |Ds
0 X X 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 1 0 1 0 0
2 1 1 0 0 0 1 0
3 1 1 1 0 0 0 1

Table for 1-to-4 line demultiplexer
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2.6 Adders and SubtractorsCascading full adders
Consider adding two binary numbers toget

0 1 0 1
+0 +0 +1 +1

00 01 01 10
e

carried bit

We sedhat the bit in the "two's" column is generated wkiee addition carried over. A h-
adder is a circuit which adds two bits together angbuts the sum of those two bits. The -
adder has two outputsumanc carry. Sum represents the remainder o integer division
A+B/2, while carry is the result. This can be exgsed as follows:

o 7] AR g i}
N —
- E_a g o a o ) o
o 3 1 1 o
D_. c T s | Q/ =
1 & 7

<
S=AxorB %&

Full Adder:

Half-adders have a major limitatio %t they carawmept a carry bit from a previous sts
meaning that they cannot be chal tcer to add multbit numbers. However, the two outy
bits of a halfadder can also represent the result A+B=3 as sudincamy both being hig

As such, the fulldder can accept three bits as an input. Commondy bit is referred to as tl
carry-in bit. Full adders can be cascaded to produce addersyohwamber of bits by dai-
chaining the carry of one output to the input @& tiex

The full-adder is usually shown as a single unit. The sutpubus usually on the bottom on t
block, and the carrgut output is on the left, so the devices can b&ngd together, most
significant bit leftmost:

| |
..

Logic Symbol of Full adder
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¢|1 l’.*m“ 5 {:nm

: G__DM_D—”

l\.:|||'|'-l.<l\.-'.l.|

1
c

|

| i || OGO

- O = O == O == O
L]
=1 - | o =

Ripple Carry Adder:

A ripple carry adder is simply several full addemnected in a series so that the carry must
propagate through every full adder before the amdis complete. Ripple carry adders require
the least amount of hardware of all adders, but #ne the slowest.

The following diagram shows a four-bit adder, whaids the numbers A[3:0] and B[3:0], as
well as a carry input, together to produce S[3r@] the carry gutput

Propagation Delay in Full Adders ‘90
a

Real logic gates do not react instantaneously ¢oirtbuts, and therefore digital circuits have a
maximum speed. Usually, the delay through a digitauit is measured in gate-delays, as this
allows the delay of a design to be calculated féfednt devices. AND and OR gates have a
nominal delay of 1 gate-delay, and XOR gates hadelay of 2, because they are really made up
of a combination of ANDs and ORs.

A full adder block has the following worst case agation delays:

« FromA orB; to Ci;1: 4 gate-delays (XOR> AND — OR)
+  FromA orB; to S: 4 gate-delays (XOR> XOR)

« From(C; to Ci;1: 2 gate-delays (AND~» OR)

+  FromC; to S: 2 gate-delays (XOR)

Because the carry-out of one stage is the nexiid,ithe worst case propagation delay is then:

« 4 gate-delays from generating the first carry digAgB, — C,).
- 2 gate-delays per intermediate staGe¢ Ci+1).
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« 2 gatedelays at the last stage to prce both the sum and ca-out outputs C..
1— CyandS,.).

So for am-bit adder, we have a total propagation d¢t, of:

Cita

Lol TAI TR
—l S et ind=t

t,=4+2(n—2)+2=2n+2

This is linear im, and for a 3-bit number, would take 66 cycles to complete calculation.
This is rather slow, and restricts the word_lengtour devicQ)omewhat. We would like to fi

ways to speed it up. . %
2.7Look ahead carry &
A fast method of adding numbersys calle c-% ad. This method doesn't require
carry signal to pppagate stage by stagegCausi bottleneclealhst uses additional logic

expedite the propagation and generatiorQi%arfgrrination, allowing fast addition at tt
expense of more hardware.

"
In a ripple adder, each stage cqgsgszrthe -in signal,Ci, with the input A andB; and
generates a carry-out sigrial; accordlingly. In a carrieokahead adder, we define two n

functions.

\

The generate functiol;, indicates whether that stage causes a -out signalCito be
generated if no carriyr signal exists. This occurs if both the adderm#&n a 1 in that b

Gi:Ai.Bi

The propagate functio®;, indicates whether a ca-in to the stage is passed to the c-out for
the stage. This occurs if either the addends hdvinthat bit

Pi=A; +Bj

Note that both these values can be calculated fremnputs in a constant time of a single ¢
delay. Now, the carrgut from a stage occurs if that stage generatesrg (G; = 1) or there is a
carrydin and the stage propetes the carryR;-C; = 1)
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Cim=AiBi+AiC;+B;C;

Cin1i=AiB;i+C;(Ai+Bj)

Ci1 =G +P;C;

Truth table
Aj Bj Ci Gi P Ci+1
0 D 0 D 0 0
0 D 1 D 0 0
0 1 0 D 1 0
0 1 1 D 1 1
1 D 0 D 1 0
1 D 1 D 1 1
1 1 0 1 1 1
1 1 1 1 1 1

cip1 = G + FPig Q;

ci+1 = Gi + Fi (Gio1 + FPi—1ci-1)

Civ1 = Gi + PiGi_y + PP,y (C | %2’
Cint = \./{
Cit+1 :Gt PG+ PP 1G22 [ 2Giis + ...+ PiPiy---PiPc

Note that this does not require the c-out’ﬂ{ Is from the previous stages, so we dan'¢ o
wait for changes taipple through th€ @ircuit. In fact, a given stagearry signal can be
computed once the propagate an ate sigealeaty with only two more gate delays (
AND and one OR). Thus the ca-out¥or a given stage can be calculated in consibae, and
therefore so can the sum.

The S, P, andG signals are all generated by a circuit called atlglgfull adder" (PFA), which it
similar to a full adder.

For a slightly smaller circuit, the propagate sigren be taken as the output of the fXOR
gate instead of using a dedicated OR gate, bedhbsth A and B are asserted, the gene
signal will force a carry. However, this simplifiaan means that the propagate signal will t
two gate delays to produce, rather than just
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A carry lookahead adder then conté n PFAs and the logic to produce carries from thees
propagate and generate sigr

A A G S

Cs? C; C1
PFA 3 ——I PFA 2 PFA 1 PFA O [~ Co

P3| G3 153 Pa| Gz 152 PL &1 151 Po| Go 15D

.
g

Two numbers can therefore be added in constant (), of just 6 gate delays, regardles:
the lengthn of the numbers. However, tl requires AND and OR gates with ug ninputs. If
logic gates are available with a limited numberirgfuts, trees will need to be constructec
compute these, and the overall computation timedarithmic, O(Inf)), which is still muct
better than thénear time for ripple addel Q/

\ &
2.8Binary comparators
Another common and very useful cegnbinatidona igult is that of theDigital
Comparator circuit. Digital or Binary Cey par re madefrgm
standard AND, NOR anNOT gates that co tk;ligital signals present at their in

terminals and produce an output dep &; pondhdition of those inpul
at

Another common and very useful ional lagicuit is that of theDigital
Comparator circuit. Digital or Binary Comparators are ne up from

standard AND, NOR anNOT gates that compare the digital signals preseihteat input
terminals and produce an output depending upondhdition of those inpult

B )
' L_,.-*'- | | _.:_‘:— =hE =D A=l
= e
} D— = da

L — -
o — Y —
R e

For example, along with being able to add and ssbibinary numbers we neto be able to
compare them and determine whether the value aft A is greater than, smaller than or eq
to the value at input Btc. The digital comparator accomplishes this usiegeral logic gates
that operate on the principles Boolean Algebra There are two main types Digital
Comparator available and these a
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« 1. Identity Comparator — ddentity Comparators a digital comparator that has only one
output terminal for when A = B either “HIGH” A=B 1 or “LOW” A=B=0

« 2. Magnitude Comparator -Magnitude Comparatois a digital comparator which has
three output terminals, one each for equality, AB=greater than, A>B and less
than A<B

The purpose of Bigital Comparator is to compare a set of variables or unknown nusjder
example A (A1, A2, A3, .... An, etc) against thatao€onstant or unknown value such as B (B1,
B2, B3, .... Bn, etc) and produce an output condiborflag depending upon the result of the
comparison. For example, a magnitude comparatotwof 1-bits, (A and B) inputs would
produce the following three output conditions witsempared to each other.

A>B, A=B, A<B
Which means: A is greater than B, A is equal toaRd A is less than B

This is useful if we want to compare two variabdéesl want to produce an output when any of
the above three conditions are achieved. For ex@ampbduce an output from a counter when a
certain count number is reached. Consider the siiyllit comparator below.

1-bit Digital Comparator Circuit

™ N
A > .
_.-'/" J"‘-‘_
[ \— ™
1
R Do /
L —_—

Then the operation of a 1-bit digital paratoglvsen in the following Truth Table.

Digital Comparator Truth Table

Inputs | Outputs

B A|lA>B|A=B|A<B
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1(1(0 1 0

You may notice two distinct features about the carafor from the above truth table. Firstly, the
circuit does not distinguish between either two t"two “1™s as an output A = B is produced

when they are both equal, either A = B = “0” or AB== “1". Secondly, the output condition

for A = Bresembles that of a commonly availablgido gate, the Exclusive-NOR or Ex-

NOR function (equivalence) on each of the n-bitsrgj: Q = A@ B

Digital comparators actually use Exclusive-NOR gatgthin their design for comparing their

respective pairs of bits. When we are comparing livmary or BCD values or variables against
each other, we are comparing the “magnitude” ofehealues, a logic “0” against a logic “1”

which is where the terrilagnitude Comparator comes from.

As well as comparing individual bits, we can designger bit comparators by cascading
together n of these and produce a n-bit comparjatr as we did for the n-bit adder in the
previous tutorial. Multi-bit comparators can be swacted to compare whole binary or BCD
words to produce an output if one word is largguag to or less than the other.

(“nibbles™) are compared to each othe

nitude ator. Here, two 4-bit words
)] r t output with one word connected
to inputs A and the other to be com\*/ ¥ to input B as shown below.
4-bit Magnitude Comparator CO )
Binary géry. ¢
buts B

S

Ap A Az Aa 4 By By B

A very good example of this is thes A

(LsB)  (MSB) (LSB)  (MSB)
A=B |—= _
4-bit Magnitude A=B |— Comparison
Comparator AsB |_a Outputs

Some commercially available digital comparatorshsas the TTL 74LS85 or CMOS 4063 4-bit
magnitude comparator have additional input ternsitiaét allow more individual comparators to
be “cascaded” together to compare words larger 4khits with magnitude comparators of “n”-

bits being produced. These cascading inputs areexted directly to the corresponding outputs
of the previous comparator as shown to comparé 8y ven 32-bit words.
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P —
Word A A —=
LSB inputs Az ——m
Py —— 4-hit
Magnitude
L5Binputs | Comparator
By ——=
WordB  Bi —
LSBinputs Bz —»
By ——
A<B -
A=B »
B it
Ma gnitude
Ag » Comparator
Word A As >
MSE inputs A5 -
MSE inputs @Q
B4
Word B Bs —* E-hit
MSEB inputs  Bg B —= Word
B+ | Outputs

O
When comparing large binary or. numbers like themmple above, to save time the
comparator starts by comparing theMighest-ordgiMbB) first. If equality exists, A = B then it

compares the next lowest bit and so on until itihea the lowest-order bit, (LSB). If equality
still exists then the two numbers are defined asgoequal.

If inequality is found, either A > B or A < B theelationship between the two numbers is
determined and the comparison between any addititoaer order bits stop®igital
Comparator are used widely in Analogue-to-Digital convertg/8DC) and Arithmetic Logic
Units, (ALU) to perform a variety of arithmetic aagions.
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2.90utcome
» Can create a appropriate truth table from the desciption of combinational logic
function.

» Able to design any logic circuit using MUX, DEMUX, encoders and decoders
based on the application such that the gates useda circuits are reduced.

2.10 Future Readings
http://nptel.ac.in/courses/117105080/
https://www.youtube.com/watch?v=VnZLRrJYa2l
“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John ¥arbrough, 2011 edition.

) &Q’
Q/ ‘.\

O
,Q ?
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MODULE 3
Flip Flops and Characteristic Equation

Structure

3.1 0bjevtive

3.2Introduction

3.3Basic Bistable element

3.4 Latches, SR latch,

3.5Application of SR latch,-A Switch debouncer.

3.6 The gated SR latch.

3.7The gated D Latch,

3.8 The Master-Slave Flip-Flops (Pulse-Triggered Flipps): The master-slave SR Flip-Flops,
The master-slave JK Flip-Flop,

3.9Edge Triggered Flip-flop: The Positive Edge-Trigeger D Flip-Flop, Negative-Edge
Triggered D Flip-Flop - Characteristic equations.

3.10 Registers,

3.11 Counters-Binary Ripple Counter, Synchronous Binewynters, Counters based on Shift
Registers,

3.12Design of a Synchronous counters, Design of a s Mod-N counters using clocked
JK FlipFlops

3.13Design of a Synchronous Mod-N ¢ B af or SR Flip-Flops.
3.140utcome &

3.15Future Readings

3.1Objevtive gé
* To know different between lat nd f||p flops
« Data storage elements Q

« Designing of flip flops .% e

» Design of synchronous Mad N for all the flip flops
3.2Introduction
Logic circuit is divided into two types.

1. Combinational Logic Circuit
2. Sequential Logic Circuit
Definition :

1. Combinational Logic Circuit :

The circuit in which outputs depends on only prés@atue of inputs. So it is possible to
describe each output as function of inputs by udeglean expression. No memory
element involved. No clock input. Circuit is implented by using logic gates. The
propagation delay depends on, delay of logic gdfesamples of combinational logic
circuits are : full adder, subtractor, decoder,emhverter, multiplexers etc.
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—_—> e
_ —
inputs Combinational outputs
Logic Circuit
_ —

2. Sequential Circuits :

Sequential Circuit is the logic circuit in whichtput depends on present value of inputs
at that instant and past history of circuit i.ee\pous output. The past output is stored by
using memory device. The internal data stored iioudi is called as state. The clock is
required for synchronization. The delay dependspmypagation delay of circuit and
clock frequency. The examples are flip-flops, reggis counters etc.

—_ 5 - >
inputs ———» l%tputs
>  Combinatid \ ._Q/
4 Logic it | \'

3.3Basic Bistable element
o Flip-Flop is Bistable element.
It consist of two cross coupled NOT Gates.
It has two stable states.
Q and Q are two outputs complement of each other.
The data stored 1 or 0 in basic bistable elemestaie of flip-flop.
1 — State is set condition for flip-flop.
0 — State is reset / clear for flip-flop.

O O O O O o o

It stores 1 or O state as long power is ON.
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3.4Latches, SR latch
S-R Latch : Set-reset Fliplop

= Latch is a storage device by using -Flop.

» Latch can beontrolled by direct input

= Latch outputs can be controlled by clock or enatybet.

= Q and Q are present state for outy

= Q"and Q' are next states for outp

= The function table / Truth table gives relationviben inputs and output
= The S=R=1 contlon is not allowed in SR FF as output is unpréatite.

3.5Application of SR latch- A Switch debouncer.
= A switch debouncer

Time

Time

Time

Time
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= Bouncing problem with Push button swit
= Debouncing action.
= SR FlipFlop as switch debounc

3.6 The gated SR latchCharacteristic equations

Enable input C is clock inpu & '
C=1, Output changes as per in%@@i;.

C=0, No change of state.

S=1, R=0 is set condition for F-flop.

S=0, R=1 is reset condition for F-flop.

S=R=1 is ambiguous state, not allow

3.7The gated D LatchCharacteristic equations

(a)

(b)
D Q D Q
¢ c
¢ ob
()
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*Unpredictable behavior will result
if § and R return to O simultaneously
or C returns to 0 while S and R are 1

o -

Outputs

=

Qi — [

Inputs Outputs
5 R C Q+ Q+
o 0 1 0 @
0 1 1 0 1
1 o0 1 1 0
[T B 1> 1
X X 0 Q 0

17EE35
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= D Flip-Flop is Data Fli-Flop.

= D Flip-Flop stores 1 or

= R inputis complement of

= Onlyone D input is prese

= D Flip-Flop is a storage device used in regis

3.8 The Master-Slave FlipFlops (Puls«Triggered Flip-Flops): The maste-slave SR Flip-
Flops, @ The masterslave JK Flip-Flop Characteristic equations,

Master-slave SR flip-flop

N g Ie] Ou s r 0 _.?f— 0
Clock (C) c e c o
Oy Qs &l
R R op R QLEsm———— O
Master Slave

(a)

Master disabled ; Master enabl®

| L

Slave enabled !; Slave dis& Y j Slave enabled
1
-~ \ 4
v Time

Inputs Outputs

- —s —Q}—

§ R C ot o+ ¢
— C‘

0 o L 0 0 — R -0
0 I I 0 1
1 0 = 1 0 —15 —JQ}—
1 I I I Undefined Undefined ]
X X 0 o] 0

() (d)

» Two SR Flip-Flop, 'is Master and? is slave.
= Master FlipFlop is positive edge triggere
= Slave FlipFlop is negative edge trigger
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= Slave follows master outpt
= The output is delayed.
Master slave JK Flip-Flop Characteristic equations

Master-slave JK flip-flop
T 0 1 m Qg
J -
el [ - C S s N <t
Clock L(Hl O 05 i
R op R ep Q
Master Slave
|0
(a)
Inputs Outputs ‘ %
J K C o+ ¢*
oo L] ¢ @
o 1 T L| o1 % <
Q7
o L] 1 oo & K B
N T Q0 —
T I B R B 0 ¢
B ’Q i K —Qp—
X X 0 Q Q

(b) (c)

= In SR FlipFlop the input combination S=R=1 is not allow
= JK FF is modified version of SR F
= Due to feedback from slave FF output to master=I=is allowed

= J=K=1, toggle, action in F
This finds application in count:
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3.9Edge Triggered Flipflop: The Positive Edge«Triggered D Flip-Flop, Negative-Edge
Triggered D Flip-Flop. Characteristic equations

Positive Edge Triggered D Flii-Flop

i Inputs Outputs
I : p c | ot O

0 1

|

1 0
0 0
9]

\

1
\
[
t%)
R
RS
QI

Clock (C) (b)

Q}C —C
- \ ST T o
Co <

= When C=0, the output of AND éﬂ & 3 is equali
S= R=1,No Chang oi@ae P
= |f C=1, D=1, the output of AND Gate 2 is 0 and 3.

S=0,R=1, Q=1 andQ=0

Q
]
=i
fa
|
L]l
|

3.10 Registers
» Register is a group of F-Flops.
= |t stores binary information O or
» |tis capable of moving data left or right with clopulse.
» Registers are classified
* Serialin Seria-Out
e Serialin parallelOut

+ Parallelin Seria-Out

Dept. EEE, ATMECE, Mysuru
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» Parallelin parallel Ou

Parallel data outl
I -
f; O Qe 2o
Serial
datn o o o o D )

in
Clack

e —_—C [>C
] ) op {_ op [ e

Fig. : Serial-In, lPara]lel—Out Unidirectional Shift Register

Parallel-in Unidirectional Shift Register

o i i el X"\

Fig. : Para]lel—iﬁ Unidirectional Shift Register

P
L'¢

Parallel input data is applied ilglclp.

Parallel output @QsQcQp.
Serial input data is applied to A |

Serial output data is at output of D

~ L/Shift is common control inpu

“L/S =0, Loads parallel data into regis
~L/S = 1, shifts the data in one directi
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Universal Shift Register

= Bidirectional Shifting.

= Parallel Input_oading

= Serialdnput and Seri-Output.

= Parallelinput and Seri-Output.

= Common Reset Input.

= 4.1 Multiplexer is used to select register opera
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3.11Counters-Binary Ripple Counter, Synchronous Binarycounters, Counters based on
Shift Registers

= Counter is a register which counts the sequenbeary form.
» The state of counter changes with application ofklpulse.

= The counter is binary or non-binary.

» The total no. of states in counter is called asuhed

= |If counter is modulus-n, then it has n differerites.

= State diagram of counter is a pictorial represematf counter states directed by arrows
in graph.

- 7
Fig. State diagram o@ counter

4-bit Binary Ripple Counter : 0

= All Flip-Flops are in toggle m

» The clock input is applied.

= Countenable = 1.

= Counter counts from 0000 to 1111.
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" i 4
E 1A
|1 ]
L 2 L Q
1
0 (1]

[afr g At

mm LN TLﬂ_ﬂ:IJ"dl;’ K
SO [ |

Synchronous Binary Counter :

» The clock input is common to all Flip-Flops.
= The T input is function of the output of previolip-flop.
= Extra combination circuit is required for flip-flapput.
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Counters Based on Shift Register ,Q

2 iy 2 o

2000
D @ D g p g U S 1 000
F’ﬁ P —n et _“:;C g I.!.I ? g
ob ep op ep AL
1000

[N

fa) ]

Mod-4 Ring Counter

» The output of LSB FF is connected as D input to M$B

» This is commonly called as Ring Counter or Circ@aunter.
» The data is shifted to right with each clock pulse.

» This counter has four different states.
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» This can be extended to any no. of bits.

Twisted Ring Counter or Johnson Counter

.;-" - i |_.l- - el or - -|l| |‘_,I- I 1 [ |

Mod-8 Johnson Counter

= The complement output of LSB FF is connected asddtito MSB FF.
= This is commonly called as Johnsor Counter. Q/
» The data is shifted to right with &

» This counter has eight diﬁev .
» This can be extended to any noNgT bit

Mod-7 Twisted Ring Counter

1 } [ I { I3 i I 2
Mod-7 Ring Counter

* TheDinputto MSBFFis o o
» The counter follows seven different states withligption of clock input.
» By changing feedback different counters can beiodta
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3.12Design of a Synchronous counters, Design of a Symohous Mod-N counters using
clocked JK Flip Flops

The clock input is common to all Flip-Flops.

Any Flip-Flop can be used.

For mod-n counter 0 to n-1 are counter states.

The excitation table is written considering theser® state and next state of counter.

The flip-flop inputs are obtained from charactecigtquation.

By using flip-flops and logic gate the implementatiof synchronous counter is obtained.

Difference between Asynchronous and Synchronous Coter :

Asynchronous Counter Synchronous Counter

1. Clock input is applied to LSB FF. The outpjlt Clock input is common to all FF.
of first FF is connected as clock to next FF.
-~

& =
ﬁ-'}can =ed.

2. All Flip-Flops are toggle FF.

peed\is i_ndepenSdent of no. of FF uged.

\ 1
Ql fox = —

1 > max

foex = — & \ b

50 !

4. No extra Logic Gates are required. 4. Logic &ate required based on
[design.

5. Cost is less. 5. Cost is more.

3.13Design of a Synchronous Mod-N counter using clockdd, T, or SR Flip-Flops.
2Bit binary synchronous counter
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HIGH
| FFRET

—t

The flip-flop delay time and possibility of glitchk@re overcome by the use of a synchronous
ornparallel counter. Every flip-flop is triggerad synchronism with the clock
+Fex f +

Cluck

i =i - — 5 ' Ll

B n) & f = h d
¥ q é I ¥ ¥ it L]
% 4 £ & 7 {}

cLILILELE LI L

2

1)

i i i il
i [:I 1 |
Ll L ul 2
Ll i 11 L]

-é/<-1||||la
H&\F—I.;I—L

,_
=

5 i
M s

___
—
=
Ji 2k

Q) I L
(ki Q ' (el
3.140utcome

» Student will knoe the necessity of flip flops atelimportance
» Design flip flops based on the characteristic eiguat
* Will be able to design N Mod Synchronous counter

=
e

=
-

3.15Future Readings
http://nptel.ac.in/courses/117105080/
https://www.youtube.com/watch?v=VnZLRrJYa2l
“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John ¥arbrough, 2011 edition
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MODULE 4

Fundamentals of Sequential Design and Design of Adaced Sequential Machines
Structure
4.1 0bjevtive
4.2 Introduction
4.3Mealy and Moore models
4.4 State machine notation
4.5synchronous sequential circuit analysis and design.
4.6 Construction of state Diagrams
4.7 Outcome
4.8 Future Readings

4.1 Objevtive
* To know about different models of a system ancedéffitiate between them
» Designing of sequential circuit
» Designing of sequential circuit based on probleateshent

4.2 Introduction

Definition :

In sequential networks, the outputs are functiopresent state and present external
inputs. Present state simply called as states sirlpstory of circuit. The existing inputs
and present state for sequential circui* datermiess state@networks.

Outputs

inputs :> Combina
- Loglcén; 4 CO
Vg
Merp,@ NS

Model of Sequential Network

Types of Sequential Network :

1. Asynchronous Sequential Network The changes in circuit depends on changes
in inputs depending on present state. But the ahamgnemory state is not at
given instant of time but depending on input.

2. Synchronous Sequential Network Output depends on present state and present
inputs at a given instant of time. So timing seq&eis required. So memory is
allowed to store the changes at given instantod ti

Structure and Operation of Clocked Synchronous Seantial Circuit :

In synchronous sequential circuit, the network beirais defined at specific
instant of time associated with special timing. fEhis master clock which is common to
all FFs that is used in memory element. Such dscaiie called as clocked synchronous
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sequential circuit.

Clock : Clock is periodic waveform with one positive edgel @ne negative edge during each period.

AR

+ ve edge - ve edge

This clock is used for network synchronization

Basic Operation of Clocked Synchronous SequentialifCuit

Q indicates all present state of FF.

Q+ indicates next state of FF in
network. X indicates all external
inputs.

Q+=1(x,Q)

Z indicates output signal of seque&w\/orks

Z=g(X.Q) ’QO

4.3Mealy and Moore models
The structure shown in given figure is called aaMéJlodel or Mealy Machine.

e L i

mf mmu
feombinational (Z)

Figure T.3 Mealy model of a clocked synehronous sequential network,
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There are two types of finite state machines tleatgate output —

+ Mealy Machine
« Moore machine

Mealy Machine

A Mealy Machine is an FSM whose output dependshenpresent state as well as the present
input.

It can be described by a 6 tuple (Q,0, 6, X, ¢p) where—
« Qs afinite set of states.
« Y is afinite set of symbols called the input alpiab
« O s afinite set of symbols called the output alpta
« dis the input transition function wheseQ x> — Q

« X is the output transition function where X: (ZX—>

npyt 'R@(G € Q).
Next st{/@co

Present state input =0 ,Q »input =

+ (o s the initial state from where \

State  Output State  Output

—a b X c X1
b b % d X3
c d X c X1
d d X d X

The state diagram of the above Mealy Machine is -
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1

Moore Machine
Moore machine is an FSM whose outputs depend ontbalpresent state.

A Moore machine can be described by a 6 tupl& (@, 3, X, ¢o) where—
« Qs afinite set of states.
« Y is afinite set of symbols ¢z >ut%b
- Ois afinite set of symbols call t ahuﬁa

« & is the input transition function M& xz —
N\
« X is the output transition fuq@%/hefe X-Q@0

+ (o s the initial state from where any input is presed (g € Q).

The state table of a Moore Machine is shown betow

Next State
Present state Output
Input =0 Input =1

— a b C %
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Mealy Machine vs. Moore Machine gé

The following table highlights the powts th ntlate a Mealy Machine from a Moore
Machine.

Mealy Machine 0 ‘ > Moore Machine

¥

Output depends both  Output depends only upon the
upon present state and present state.
present input.

Generally, it has fewer Generally, it has more states than
states than Moore Mealy Machine.
Machine.

Output changes at the Input change can cause change in
clock edges. output change as soon as logic is
done.

Dept. EEE, ATMECE, Mysuru 54



Digital System Design 17EE35

Mealy machines react In Moore machines, more logic is
faster to inputs needed to decode the outputs since
it has more circuit delays.

Mealy and Moore Machines

Moore Machine

Outputs

Mext Stale
Combinatorial

Logic

it
Combinatoriza
Loigic

Inputs

Mealy Machine

Mext State
Combinatorial
Liogic

Inputs Outputs

&
Block Diagram Mea@snd Moore Machines

& .
Difference between Mealy Modeld;wooéré Model of ¥hchronous
Sequential Circuit

Mealy Model : In Mealy Model the next state is function of extrmputs and
present state. The output is also function of edlenputs and present state. The
memory state changes with master clock.

oS

Q+=1(X,Q) Z =9(X,Q)

Moore Model : In Moore Model the next state is function of extdnmputs and
present state. But the output is function of prest¢ate. It is not dependent on
external inputs. The no. of FFs required to impletre#rcuit is more compared
with Mealy Model,

Q+=1(X,Q) Z =9Q)




Digital System Design

17EE35

T —]
[ .
G
2— gl
= ha-}crﬂ
& ol
Ok

Logic Diagram for Mealy Network

Logic Diagram for Moore Network
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Transition Tables :

Instead of using algebraic equations for next statd outputs of sequential network, it is more
convenient and useful to express the informatic@lular form. The Transition Table or State Traosi
Table or State Table is the tabular representatfdhe transition and output equations. This taiolesist

of Present State, Next State, external inputs arpud variables. If there are n state variables the
rows are present in state table.

4 4 State machine notation

Input Variables : External input variables to sedia machine as inputs.

Output Variables : All variables that exit from thequential machine are output variables.

State : State of sequential machine is definedhleycontent of memory, when memory is realized by
using FFs.

Present State : The status of all state variablecontent of FF for given instant of time t isledlas
present state.

Next State : The state of memory at t+1 is calledlext state.

State Diagram : State diagram is graphical reptaten of state variables represented by circlee Th
connection between two states represented bywitbsarrows and also indicates the excitation irgoud
related outputs.

Output Variables : All variables that exit from tbequential machine are outputvariables.

4.5synchronous sequential circuit analysis and design.

} %gm,m

0:

\/ T NS FF input
‘Z/ il I I
101 & 0 oo x
0 [ T[] x
01 ‘Q e
1 o X 1
D w0
1 1 X o
Stats diagram of I-KFF
10 DT || e FFip
01 ad Q [ 5 E
o o 1] X
0
] 1 1 ]
Stats diagram of SE.FF 1 5 > :
1 1 X 0
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Application Tabls of D'FF
1 - T,
. FZ | N5 || FFip
! Q | & | Dir
0 0 0
0 1 1
Stats diagram of DFF
1 0 0
1 1 1
Application Tabla of FF
1 BZ | NS FF ip
Q
1] Q o= Tifp
0 0 )
! ) 1 1
State disgram of TFF 1 q 1
%
\ 3 »ﬁ?" =
g\'y
Transition table for Mealy NW (.bsr v
s -
Present state N o QOutput
(L) ' 12 » ()
(Input ) i feve )
AN ¥ 1 0 Sz
00 10” 01 0 1
01 11 11 0 0
10 10 00 1 0
11 00 00 1 0

Q1+ :;52+§192 J O, =D,
0, =x0,+0,0,, 0, =D,
Z=x0,+0,0,x
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Transition table for Moore Network

NS(Q1+,Q2+)
PS(Q1Q2) I/p XY (Zol/zpz)
00 01 10 11
00 00 10 01 11 01
01 01 11 00 11 00
10 10 01 00 00 11
11 11 00 10 00 01

=0,0,.Z£,=0,+0,. J =y
K=0x+y, J,=0x+xy0,.F.sxy+y0,
& <&

N

+
3
Nz
o

o —

Synchronous Sequential Circuit

T,=x0,+00,. O =T,2Q,
I, =x+00,. Q2_=T2 2Q,
Z,=x0,. Z, =x0,
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4.6 Construction of state Diagrams

State Tables :

State table consist of PS, NS and output sectiba.PS and NS of state tables are obtained by
replacing the binary code for each in the transitele by newly defined symbol. The output
section is identical to output section of transittable.

Symbols for state can be S1, S2, S3,...... SnorABE....

State table for Mealy Machine

PS NS Olp Z

00—-A |C |B 0 1

01-B D |D 0 0

10-C C |A 1 0

11-D |A |A 1 0 Q

' <

State Diagram : \{ bégf" :
ate tables

It is graphical representation of st e of network is represented by labeled node.

Directed branches connect the nodes Q’&i&cgﬂsit'ran between states. The directed branches
are labeled according to the values eghaltinariable that permit transition. The output of

sequential network is also entered'@ate diaghammase of Moore Network state diagram, thE

values of input for output is not written.

Presend  Presant Ao
Preseal '||-|l:||_|,| oakpul indicatss
it {z) [z mExl gtote

Y Z@
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State diagram for Mealy Network

P1:

e —

Analysis of Synchronous Circuit

The given circuit in above figure is Mealy Netwakd the output is function of input variable
and PS of FF. The analysis of above circuit isolews.

The Excitation and Output Function

L =Xy, + )V, + X)W

JQZ-Y_- K—EZ_Y, le.}’lﬂ }{lz}r2
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By substituting the FF inputs in characteristicaon, the next state of FF is obtained in
terms of PS of FF and external input.
The characteristic equation of JK FF is

The Excitation Table

PS Excitation input Output Z
Q201 | 12 k2 | x=0,x=1
(v2vyl) K1
x=0,1 =x=0,1
00 01 01 1 1.4 J, Q{_ a
! =y, =
01 01 01 0o % _
= s Z—‘n —1211—1'1
1 0 01 1 0 { _
- ; =0, _—1~,+1 and When x=1, z=y
11 01 1 0 \A % : .

State Table & \

PS NS ' O/pZ
x=0 x=1
2 Q1 | state | Q2+ | Q1+ [ state | Q2+ | Q1+ | state | X=0 | X=1
¥2) | D

0 0 A 0 0 A 1 0 C 1 1
0 1 B 0 0 A 1 0 C 0 0
1 0 C 0 1 B 1 1 D 1 1
1 1 D 0 1 B 1 1 D 1 0

Ql+ =Q2=1y2 if x=0.z=y,+y

Q2+ = if x=1. z=y

State diagram
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ABCD Represnts present state

4.7 Outcome
» Will know difference between Milley and Moore modeltype of sequential circuits
» To write state diagram for sequential circuit or vice versa.

4.9Future Readings
http://nptel.ac.in/courses/117105080/

7

https://www.youtube.com/watch?v:\/m\‘ J¥az2l &

“Logic Design” by RD Sudhaker S&v bz%y

“Digital Logic Applications and Design” by@/%)vt\arbrough, 2011 edition
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Module 5

HDL and Data Flow Management

Structure

5.10bjevtive

5.2Introduction

5.3HDL: A brief history of HDL,

5.4 Structure of HDL Module,

5.5Operators, Data types, Types of Descriptions, Satrart and synthesis
5.6 Brief comparison of VHDL and Verilog.

5.7 Data-Flow Descriptions: Highlights of Data flow degtions
5.8 Structure of data-flow description,

5.9 Data type-vectors

5.100utcome

5.11Future Readings

5.1 Objective
* The programming language will reduce the size coatpto building up the circuit
» Different types of programming used for represéstdigital circuits
» Usage of different programming language base m(ement

e Tolearn and apply VHDL an* code for |ts.
5.2Introduction to VHDL:
VHDL stands foHSIC (Very Highk Sp ed ted ‘CircuiksrdwareDescription
Language. In the mid-1980’s the U mentefeBse and the IEEE sponsored

high-speed integrated circuit. It ha me now afindustry’s standard languages
used to describe digital systems R

The other widely used hardw@descfiption languag¥erilog. Both are powerful

languages that allow you to descfibe and simulateptex digital systems. A third HDL

language is ABEL (Advanced Boolean Equation Langdaghich was specifically

designed for Programmable Logic Devices (PLD). ABEless powerful than the other
two languages and is less popular in industry

5.3 VHDL versus conventional programming languages

(1) A hardware description language is inherently palral.e. commands, which
correspond to logic gates, are executed (computguhrallel, as soon as a new input
arrives.

(2) A HDL program mimics the behavior of a physicaljaldy digital, system.

(3) It also allows incorporation of timing specificat® (gate delays) as well as to
describe a system as an interconnection of differ@mponents.

Levels of representation and abstraction

A digital system can be represented at differevglfeof abstraction [1]. This keeps the
description and design of complex systems manageBlgure 1 shows different levels
of abstraction.

the development of this hardware d§§ lon‘lagguaith the goal to develop very

Dept. EEE,ATMECE, Mysuru
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S«<=A+B
Behavioral Structural
* &lecmthimic {componants
™ Dt s migreannectiong
5, ? 4
%
.

ETRINLIRIA Physical

B [ aroismeriaton

Figure 1: Levels of abstraction: Behavioral, Stouat and Physical

The highest level of abstraction is thehavioral level that describes a system in terms
of what it does (or how it behaves) rather thanténrms of its components and

interconnection between them. A behavioral dedoriptspecifies the relationship

between the input and output signals. This coulcald&oglean expression or a more
abstract description such as the Regj:(ei raoszfgo%iﬁ level.

As anexample,let us consider a simpi cit that caspagers when the door is
open or the seatbelt is not used w! ver 'fﬁserted in the ignition lock At the
behavioral level this could be expressce :

e tbeﬁ)_o
ibes a system aflextton of gates and

Warning = Ignition_on AND ( Door_og€én O
Thestructural level, on the other hand,
components that are interconnecte perform aregedunction. A structural
description could be compared to chematic afréonnected logic gates. It is a
representation that is usually c o*the playsiealization of a system. For the
example above, the structural représsentation ie/sho Figure 2 below.

LI t _\‘I Eq
- AN RN NG
;i::zﬂj_
B2

IEHITION
Figure 2: Structural representation of a “buzzerciat.

SRELT

VHDL allows to describe a digital system at tteuctural or the behavioral level.
The behavioral level can be further divided intotiinds of stylesData flow and
Sequential The dataflow representation describes how datemthrough the system.
This is typically done in terms of data flow betwaaegisters (Register Transfer level).

Dept. EEE,ATMECE, Mysuru
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The data flow model makes use of concurrent statesribat are executed in parallel as
soon as data arrives at the input. On the othead,lsaqguential statementsre executed
in the sequence that they are specified. VHDL ald@athconcurrent andsequential
signal assignments that will determine the manmevhich they are executed.

Mixed level design consists both behavioral and structurabdesi one block diagram.

5.4 Basic Structure of a VHDL file

(a) Entity
A digital system in VHDL consistosf a designtity that can contain other entities that

are then considered components of the top-levélyefdach entity is modeled by amtity
declaration and anarchitecture body One can consider the entity declaration as the
interface to the outside world that defines theutnpnd output signals, while the
architecture body contains the description of thigyand is composed of interconnected
entities, processes and components, all operatngucrently, as schematically shown in
Figure 3 below. In a typical design there will bamg such entities connected together to
perform the desired function.
A VHDL entity consisting of an interface (entityeclaration) and a body

(architectural description).

a. Entity Declaration

The entity declaration defines the NAME of the gnéind Jists the input and output

ports. The general form is as follows
entity NAME_OF_ENTI is| %@éclaratlor)s]
TY

port (signal_names  mod t
e
signal_names mod type &

: e
signal_names type: Q

mod .Q
e

end [NAME_OF_ENTITY];

An entity always starts with the keywoedtity, followed by its name and the keyword
is. Next are the port declarations using the keywmd. An entity declaration always
ends with the keywordend, optionally [] followed by the name of the entity.

Dept. EEE,ATMECE, Mysuru
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x > S
—

Y | Full Adder

CI. C'-{Z:

Figure 3: Block diagram of Full Adder

Example 1:
entity FULLADDER
is

-- (After adouble minus sign (-) the rest of
--the line s treated asa comment)

-- Interface  description  of FULLADDER
port ( x,y, Ciiin bit

S, CO: out bit); @

end FULLADDER,;
The module FULLADDER has Wlace Tehcsf them are the input portsy
andCiindicated by the VHDL ke mammg two are the output pdsts
and
COindicated byout. The signals go@; ugh these ports are chtusba of the type
bit. The typebit consists of the two racters '0' and '1' ancesgmts the binary logic
values of the signals.
0The NAME_OF_ENTITY is a user selected identifier
signal_names consists of a comma separated Iste@br more user-selected identifiers that
specify external interface signals.
O mode is one of the reserved words to indicate theaigimection:

0 in —indicates that the signal is an input

0 out - indicates that the signal is an output of théyynthose value
can only be read by other entities that use it.

o buffer —indicates that the signal is an output of thé@enthose value
can be read inside the entity’s architecture

0 inout — the signal can be an input or an output.

Otype a built-in or user-defined signal type. Exampésypes are bit,
bit_vector, Boolean, character, std_logic, andwdtmyic.

0 bit— can have the value 0 and 1

o bit_vector- is a vector of bit values (e.qg. bit_vector (0jo

o std_logic, std_ulogic, std_logic_vector, std_ulogiector can have 9
values to indicate the value and strength of aasigstd_ulogic and
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std_logic are preferred over the bit or bit_vectypes.
boolean- can have the value TRUE and FALSE
integer— can have a range of integer values
real— cahave arange of real values
character— any printing character

0 time-to indicate time

0 generic: generic declarations are optional
Example 2:

0]
0]
0]
0]

inl
<

in2 | ANDGate | 9ul

Figure 4: Block diagram of AND Gate Q/
\ <
Example 3: \/ bgsé ;
o
Io O

1 41 MUX 2

Figure 5: Block Diagram of 4:1 Multiplexer

entity mux4_to_1lis
port (l10,I1,12,13: in std_logic;
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S:in std_logic_vector(downto 0);
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y: out std_logic);
end mux4_to_1,

Example 4:
D Flip-Flop:
S R
D , Q,
CLK BAEE
—” Qb
f———————>

Figure 6: Block Diagram of D Flip Flop

entity dff_sris

port (D,CLK,S,R: in std_logic;
Q,Qb: out std_logic);

end dff_sr;

Architecture body A
The architecture body specifies | the g CUI and how it is implemented. As
discussed earlier, an entity or Ci can i a variety of ways, such as
behavioral, structural (interconnect ts), combination of the above.

The architecture body looks as follows, N

architecture architecture_name X o™MNAME_OF_ENTITY s

-- Declarations 0 N

-- components declarations ,Q
-- signal declarations

-- constant declarations
-- function declarations
-- procedure declarations
--type  declarations

begin
-- Statements

end architecture_name;

The types of Architecture are:

(a) The behavioral Model

(b) Structure Model

(c) Mixed Model

(a) Behavioral model

The architecture body for the example of Figurdeacribed at the behavioral level, is
given below,
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Example 1:

architecture behavioral of BUZZERIs

begin

WARNING (not DOO and IGNITION) or (not SBEL and

<= R T

IGNITION);

end behavioral;

The header line of the architecture body definesattthitecture name, e.g. behavioral,
and associates it with the entity, BUZZER. The #ecture name can be any legal
identifier. The main body of the architecture stavith the keywordbeginand

gives the Boolean expression of the function. Weseke later that a b havioral model
can be described in several other ways. The “<zhl®)l represents an assignment
operator and assigns the value of the expressidhenght to the signal on the left. The
architecture body ends with and keyword followed by the architecture name.
Example 2:

The behavioral description of a 3 input AND gatehewn below.

entity AND3 is

port (inl, in2, in3:in std_logic;

outl: out std_logic);

end AND3;

architecture behavioral _2f AND3is

\ 3 &Q’
N
&

o%
.Q 2

\
3

Dept. EEEATMECE,Mysuru g1



Digital System Design 17EE35

begin
outl <=inl and in2 and in3;
end behavioral_2;
Example 3:
entity XNOR2is
port (A, B:in std_logic;
Z: out std_logic);

end XNOR2;

architecture behavioral_xnoof XNOR2is
-- signal declaration (of internal signals X, Y)
signal X, Y: std_logic;

begin

X <= AandB;

Y < (notA) and (not B);

Z <=XorYy;

End behavioral_xnor;

Example 4:

SR Flip Flop:

entity SRFFis

port (S, R:in std_logic;

Q, Qb: out std_logic); @
end SRFF; N

architecture behavioral _2f >

begin / % ;
Q< NO (Sand Qby); \/ b& <

= T % A
Qb <= NOT (R and Q); Q/ &
end behavioral_2; &J N
The statements in the body of t @ﬂtécture nogkeof logic operators. In addition,
other types of operators includi lational, tslaifithmetic are allowed as well.
Concurrency
The signal assignments in the above examplesareurrentstatements This implies
that the statements are executed when one or mdhne signals on the right hand side
change their valu@.e. an event occurs on one of the signals).
In general, a change of the current value of aadigncalled arevent For instance,
when the input S (in SR FF) changes, the firstesgion gets evaluated, which changes
the value of Q, change in Q in turn triggers secexpgression and evaluates Qb. Thus Q
and Qb are updated concurrently.
There may be a propagation delay associated withctiange.Digital systems are
basically data-driven and an event which occurs oone signal will lead to an event
on another signal, etc. Hence, the execution of trstatements is determined by the
flow of signal values. As a result, the order in wich these statements are given does
not matter (i.e., moving the statement for the output Z ahefthat for X and Y does
not change the outcome). This is in contrast toventional, software programs that
execute the statements in a sequential or procedharaner.
Example 5
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architecture =~ CONCURR of FULLADDER is
begin ENT
S< xxory xor Ciafter 5ns;

CO (xandy) or(y andCi) or(x and Ci)after 3ns;
<=
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Example2:

architecture = CONCURRENT_VERS of FULLADDER is
ION2

signal PROD1 PROD2 PROD : hit;

begin ' 3

SUM A xor B xor C; --statement1

<=

CARR <= or PROD2 or PRODS3 -- statement 2

Y PROD1 :

PRO <= andB; - stateméntS
D1 A and C; - statement 4

PRO = B and C: — statement 5

D2 5

PRO A

D3

end CONCURRENT_VERSIONZ;

(a)Concurrent statement: In VHDL With select and Whezise statements are called

as concurrent statements and they do not requir@€ass statement
Example 1: VHD code for 4:1 multiplexor
L

library ieee;

use ieee.std_logic_1164.all;

entity Mux is

port( I:in  std_logic_vector(3 )

'ownto,, 0); Q;
S:in  std_logic_vector(1 d to 0)
y: out std_logic); \/ b‘ :

end Mux; 8

-- architecture using logic ex@%aop

architecture ~ behvl of Muxis & .

begin N

y<g (not(s(0)) and not(s(1 le I[(0)) or(s(0) and not(s(1))

and 1(1)) or (not(s(0)) a (1) and I(2))or (s(0) and s(1) and

1(3));

endbehvl,;

-- Architecture using when..else
architecture behv2 of Mux is
begin

y<= 1(0) when S="00" else
I(1) whe S="01" else
I(2) n S="10" else
I(3) whe S="11" else
n
whe
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end behv2;
-- architecture using with select statement
architecture behv3 of Mux is
begin
with sselect
y<=i(0) when “00”,
i(1) whe “017
i2) n “107,
i(3) whe “117
n
whe
n
‘2’ when others;
end behv3;

Note: ‘Z" high impedence state should be enteredin et
Example 2: SR flipflop using when else statement

entity SRFFis

port ( S, R:in bit;

Q, QB: inout bit);

end RSFF;

architecture beh of RSFFis
begin

Q<= Qwhen S=‘0" andR
‘0 whenS =0 andR ='N
‘1’ whenS ='1" andR =0
7

QB <=not(Q);

end beh; ’

The statementVHEN.....ELSE ¢ ns are executed one at a time in sequesrtizr
until the conditions of a statem re met. Tt fitatement that matches the conditions

required assigns the value to the target signad. tAhget signal for this example is the
local signalQ. Depending on the values of sign8sndR, the values Q,1,0 and Z are
assigned t@.

If more than one statements conditions match, tharkt statement that matches does
the assign, and the other matching state.

In with ...selectstatement all the alternatives arte checked simedtasly to find a
matching pattern. Therefore tiéth ... selectmust cover all possible values of the
selector

Structural Descriptions

A description style where different components af architecture and their
interconnections are specified is known as a VHBucsural description. Initially, these
components are declared and then components' testaine generated or instantiated. At
the same time, signals are mapped to the compompents in order to connect them like
wires in hardware. VHDL simulator handles compongrgtantiations as concurrent

assignments.
Syntax:
component declaration:
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component component_name

[generic (generic_list type_name [:= expressiop{;
generic_list type_name [:= expressiot} ;

[port (signal_list injout|inout|buffer type_namg;
signal_list in|out|inout|buffer type_namp );]
end component

Component instantiation:
component_label component_nameport ma (signal_mappiny

p
The mapping of ports to the connecting signalsmiutine instantiation can be done
through the positional notation. Alternativelyniay be done by using the named
notation.
If one of the ports has no signal connected tthis happens, for example, when there
are unused outputs), a reserved word open maydae us
Example 1:
signal_mappingdeclaration_name>  sjgnal_name
entity RSFFis -
port ( SET, RESETIn bit;
Q. QBAR:nout bit);
end RSFF;
architecture _II\_IETLIS of RSFFis

7

componentNAND2 )

port (A, B: in bit; C: out b .&
end component;

begin \Q( bg o
Ul: NAN port ma (SET, QBA &); CO <

D2 p R, o
U2: NAN port ma (Q, RESET Q v
D2 p , D
end NETLIST; 0 >
--- named notation instantiation:
Ul: NAN port map (A => SET, C=> Q, B=> QBAR),

D2
Uil
SET A
— q
B

_><
e e

Figure 1: Schematic of SR FF using NAND Gate

The lines between the first and the keywdehin are acomponent declarationlt
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describes the interface of the entignd_gatehat we would like to use as a component
in (or part of) this design. Between theginandendkeywords, the statements define
component instances

There is an important distinction between an enéitgomponent, and a component
instance in VHDL.

The entity describes a design interface, the compiodescribes the interface of an entity
that will be used as an instance (or a sub-blak), the component instance is a distinct
copy of the component that has been connectedér parts and signals.

In this example the componemnd_gatéhas two inputsA andB) and an output ©.

There are two instances of thend_gatecompone nt in this architectureo rresponding to
the two nand symbols in the schematic. The firstaince refers to the top nand gate in

the schematic and the statement is calledctmponent instantiation statement.The
first word of the component instantiation statem@dtnand2) gives instance a namg,

and specifies that it is an instance of the compbnand_gate The next words describes
how the component is connected to the set of tegdeising theort map clause.

The port map clause specifies what signals of the design should be ecied to the
interface of the component in the same order ay tre listed in the component
declaration. The interface is specified in orderAasB and thenC, so this instance
connectset to AQBARto B andQ to C. This corresponds to the way the top gate in the
schematic is connected. The second instance, na@) nectRESETto A, Qto A,

and QBAR to C of a different instapce™f the sam e%ﬁtecomponent in the same

manner as shown in the schematic.
lyfggﬁ,description of a schematic. A list of

The structural description of a des
components and there connections 11 gay | @¥sas called a netlist. The structural

description of a design in VHDLfIs f.many meaof specifying netlists
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Example 2: Fou Bit Adder — lllustrating a structural  VH model:

r DL
s(3) s(2) s(1) s(0)

T T T ‘

c(4) _ (4 i (1)
<« Full c(3) Full ¢(2)] Full c(1)] Full Ci
Adder Adder Adder Adder
b(3) a(3) b(2) a(2) b(l) a(l) hi0) a(0)
Figure 2: 4-bit Adder using four Full Adders Q,

-- Example of a four bit acdt Q,
library ieee; “y
useieee.std_logic_1164ll; \&/ bg& .
-- definition of a full  addey v
entity FULLADDER is Co o

port (x,y, cii instd_logic; & O

s, co: out std_logic); N

end FULLADDER,; 0 "

architecture  fulladder_beh ‘FULLADDER is
begin

S<= XXOry Xxor Ci;

co<= (xand y)or (xand cior(y and ci));
endfulladder_behav;
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-- 4-bit adder

library ieee;
useieee.std_logic_1164ll;
entity FOURBITADD is

port (a, b:in std_logic_vector(3 downto 0);

Cin :in  std_logic;

sum: out std_logic_vector (Blownto  0);

Cout: out std_logic);

end FOURBITADD;

architecture fouradder_structure of FOURBITADD is
signalc: std_logic_vector (downto 0);
componentFULLADDER

port(x,y, ci: in std_logic;

S, co:  out std_logic);

end component;

begin

FAO: FULLADDER

port ma (a(0), b(0), Cin, sum(0), c(2));

Y

FAl: FULLADDER

port ma (a(l), b(1),
Y

FA2: FULLADDER

port ma (a(2), b(2),
Y

FA3: FULLADDER

port ma (a(3), b(3),
Y

Cout <= c(4); 0 N

end fouradder_structure; v

We needed to define the internalsignals c (4 doWdto indicate the nets that connect

the output carry to the input carry of the next &dder. For the first input we used the

input signal Cin. For the last carry we definedirds an internal signal. We could not

use the output signal Cout since VHDL does notvallbe use of outputs as internal

signals! For this reason we had to define the matlecarry c(4) and assign c(4) to the

output carry signal Cout.

5.5 Operators

(a) VHDL Operators

VHDL supports different classes of operators thggrate on signals, variables and
constants. The different ¢ lasses operatorsiarersrized below.
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Clawss
. Logheal operunes and or nand nar xor ENST
2. Belatioaal oporalas | = A= < <= = ==
i "'|I1i|1|.'-'p:_'-r.||r|r-. all aSrL ala Bra Eal EOE
JAddinen opemiors * - i
5, l'|ur:.'|.'-:|:u:_"'.|h'-r-: # -
4, Maligplving op. " ! mid TR
ﬂTm':'ll.l M CBFS, 3] i abvs nsg

The order of precedence is the highest for theatpes of class 7, followed by class 6
with the lowest prec dence for class 1. Unlessmieses are used, the operators with
the highest precedence are applied first. Operaibithe same class have the same
precedence and are applied from left to right iregpression. As an example, consider
the following std_ulogic_vectors, X (='010"), Y(=), and Z (‘'10101’). The expression
not X &Y xor Zrol 1

is equivalent to ({ot X) & Y) xor (Zro! &) = ((101) & 10@ (01011) =(10110xor
(01011) = 11101. The xor is execut®&d oiM\a bit- p

1. Logic operators

The logic operators (and, or N\ nor, d)r)<rare defined for the “bit”,
“boolean”, “std_logic” and “std_u / irvectors. They are used to define
Boolean logic expression or to perform dperations on arrays of bits. They give
a result of the same type as the ope it @lddm). These operators can be applied
to signals, variables and constants
Notice that the nand and nor op alre notedse. One should use parentheses in
a sequence of nand or nor op S to prevemtaserror:

X nand Y nand Z will give a syntaX error and should be written(dshand Y) nandZ.

2. Relational operators

The relational operators test the relative valdesvo scalar types and give as result a
Boolean output of “TRUE” or “FALSE”.

AN
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Operator Description Operand Types Result Type

= Equality any bype Boolean

f= Inequality any iype Boalean

< Simallerthan scalar or discrete array | Boolean
Lypes

= Smaller than o egual scalar or discrete array. | Boolean
rypes

> Creater than scalar or discrete array | Boolean

Notice that symbol of the operator “<=" (smalleremyual to) is the same one as the
assignment operator used to assign a value torelsgy variable. In the following
examples the first “<=" symbol is the assignmengrapor. Some examples of relational
operations are:
variable STS : Boolean;
constantA : integer :=24;
constantB_COUNT : integer :=32;
constantC : integer :=14; )
STS <= (A < B_COUNT) ; -- will ig
STS <= ((A>=B_COUNTpr (A% C
STS <= (std_logic (‘'1’, ‘0", ‘1) < std
type new_std_logids (‘'0’, ‘1’, ‘Z’, *-); R
variable A1: new_std_logic:="1’; @ “
N

variable A2: new_std_logic:="Z’; .
STS <= (Al < A2); will result in, "since ‘1’ ecurs to the left of ‘Z".

For discrete array types, the comparison is donenoglement-per-element basis, starting
from the left towards the right, as illustratedthg last two examples.

<
u % to STS

; “TRUE”
ic('Q W¥'))&-makes STS “FALSE”

3. Shift operators
Theseperators perform a bit-wise shift or rotggeration on a one-dimensional array of
elements of the type bit (or std_logic) or Boolean.
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Operator | Description Cperand Type Kosult Type
sll Shift e ft logical (Rl mght Eafi: Any onedimensiond Sunme as left rype
vaciuted hits with dee O army bype with elemments of
ivpe bt or Boolein: Right
integer
srl Shift right Logical (Fill lefi same as above Same as left type
vacated higs with 1
=la ahifr ket arthmetis (il righ s as above Same as left rype
vacated bits with rightmost b
BEa Shift eight anthmetic (G- efi same a5 above Same as left type
vacated bits with lefumest bit)
rol Hotate left (cincular) sane as above Same o5 [eft rype
TQE Fodate vight (caculor) same as above Same as lefi type

The operand is on the left of the orf&sat ¢ nu Integer) of shifts is on the right
side of the operator. As an exainple,

variable NUML1 :bit_vector := “180101 10; b‘r ¢

NUM1 stl 2; °

will result in the number “00100101”. CO o

When a negative integer is given, thQQJ sit@aatcurs, i.e. a shift to the left will be
a shift to the right. As an example Q N

NUM1 srl —2 would be equivale UIVEIl 2 and give the result “01011000".

Other examples of shift operati@ére for thevaittor A = “101001”

variable A: bit_vector :="101001";

Dept. EEE,ATMECE, Mysuru
92



Digital System Design 17EE35

Asll 2 results in “100100

Asrl2 resultsin “0010107
Asla2 resultsin “loo111”
Asra 2 resultsin “1110107
Arol 2 results in 1001107
Aror2 resultsin “0110107

4. Addition operators

The addition operators are used to perform aritlmmeperation (addition and
subtraction) on operands of any numeric type. Tdreatenation (&) operator is used to
concatenate two vectors together to make a longer lo order to use these operators

one has to specify the ieee.std_logic_unsigneodratd logic_arith package package in
addition to the ieee.std_logic_1164 package.

_\
Operator | Description Left Ope®pd HI;_II{ Hesult Type
Type /
+ Auldition Nuinerich 1% s lefi Sume [ype
v <Q'*- i
d ..I\III.
Subtrac Mumane 1 < Sibme as lefi Snme type
i L FIA TR TR 1Y & A| e & = LI }I
i N l.:1;-£'u|:r.|
& Cinncatentson Arrn@ n1-:~r|'| Same as lefl Somwe areny type
by e r'-]'h,'ru'd

An example of concatenation is the grouping of aliginto a single bus [4].
signalMYBUS :std_log ic_vectro (18ownto 0);

signal STATUS :std_logic_vector (@ownto 0);

signalRW, CS1, CS2 :std_logic;

signal MDATA :std_logic_vector ( Qo 9);

MYBUS <= STATUS & RW & CS1 & CS2 & MDATA;

Other examples are

MYARRAY (15 downto 0) <=“1111_1111" & MDATA (2to 9);

NEWWORD <= “VHDL" & “93";

The first example results in filling up the first&ftmost bits of MYARRAY with 1's and

the rest with the 8 rightmost bits of MDATA. Thestaexample results in an array of
characters “VHDL93".

Example:
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Signal a: std_logic_vector (3 downto 0);
Signal b: std_logic_vector (3 downto 0);
Signal y:std_logic_vector (7 downto 0);

Y<=a & b;

5. Unary operators

The unary operators “+” and “-“ are used to spetify sign of a numeric type.

Chpse Fatior D=eriptiomg Operand Type Baesult Typwe
+ lemtity Any numeric type | Same type
- Negation Any numenc type Same type

6. Multiplying operators
The multiplying operators are used to perform matgcal functions on numeric types
(integer or floating point).

¥ rator Description Left Operand | Right Operand | Result Tyvpe
Type Ts
et
I S@ oo Same type
- Multiplication | e pftn "g,
V‘fhlmﬁ’)&‘ ligleger or real Same as left
v pe CD |
ArpQuitefr or Ay physical Same as righl
o |
Nt !
f Drivision <y¥:|!r inieger o Any Lisleger of Same Iy pe
Moiting ol fodting podnd
Ay pliysical Amy indeger o Same as lefi
b e real | ype
Aqry physical Rame ype vk
type
mod Modulus Any infeger vpe Sume iy pe
Eaim Femminder Ay integer ivpe ity pe

The multiplication operator is also defined whem ofi the operands is a physical type
and the other an integer or real type.
The remainder (rem) and modulus (mod) are defirsefdlbows:
A rem B = A—(A/B)*B (in which A/B in an integer)
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A modB =A-B *N (in which N is an integer)
The result of theem operator has the sign of its first operand whike bsult of thenod

operators has the sign of the second operand.

Some examples of these operators are given below.

11rem 4 results in 3

(-11)rem 4 results in -3

9mod4 resultsin 1

7 mod (-4) results in =1 (7 — 4*2 = -1).

7. Miscellaneous operators

These are the absolute value and exponentatioatopgthat can be applied to numeric
types. The logical negation (not) results in theeinse polarity but the same type.

Chporator Deseription Lelt {hpermmd Right Operamd | Hesall Type
Tyvpe Ty

e E".'|'~|1|rE-|'|l|.|[|-.‘u| ]lJl.I‘.'Et".' pe Toibe v Tvjpe Saie sz lefi
Fluating podnn Initeger 1y pe Sz as el

aba Ab=ilute value Ay numeric ype Same type

nat Logcal segation | Ay \ "\. aindean Ly Q’;Qf Sarte lype

VHDL data types: \&/ >
To define new type user must create’a ty. etarak type declaration defines the

name of the typeand therange of the ty o

Type declarations are allowed in >

(i) Package declaration (ii) Entity ratk)ri)(Architecture Declaration

(iv)Subprogram Declaration (v ess'Declaration

Diata Tvpes
L v

; v '

File Access Sealar Composile
v . v ' ! }
Enumerated Real Integer Physical — Array Record
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Enumerated Types:

An Enumerated type is a very powerful tool for adst modeling. All of the values of an
enumerated type are user defined. These valuebe&adentifiers or single character
literals.

An identifier is like a name, for examples: daygdi, x

Character literals are single characters enclasediotes, for example: *x’, ‘I, ‘0’
Type Fourvalis (x, ‘o, ‘I, ‘7Y
Type color is(red, yello, blue, green, orange);
Type Instructionis  (add, sub, Ida, Idb, sta, stb,outa, xfr);
s

7

AR
N4
Q/ ‘.\

O
,Q ?
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Real type example:
Typ input levelis range -10.0to +10.0

e

Typ probabilityis range 0.0 to 1.0;

e

Typ W_Da is(MON, TUE WE THU FRI, SAT SUN);

e y , D, , ,
type dollarsis range Oto 10;

variable day: W_Day;
variable Pkt_money:Dollars;

CaseDayis

Whe ILJE pkt_money:=6;

n

Whe M OR Pkt_money:=2;

n ON WED=>

Whe others => Pkt_money:=7;

n Ccase

End

Example for enumerated type - Simple Microprocessomodel:
Package instr is

Type instruction is(add, sub, & db, sta ,outa,
End instr; %

Use work.instr.all;

Entity mpis \/ bg &

PO (instr:in Instruction; CO <

Addr: in Integer;

RT >
S

Data: inout integer);

End mp; 0 ?
Architecture mp of mpis

Begin

Procesg(instr)

type regis array(0to 255) of integer,;
variable a,b: integer;
variable reg: reg;

begin

caseinstris

whe Ida => a:=data;

n ldb => b:=data;

whe add =>a:=a+b;

n sub =>a:=a-b;

whe sta=> reg(addr) :=a;
n

whe

n

whe

n

xfr);
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whe stb => reg(addr):=b;
n

whe outa =>data = &,

n xfr=> a:=b;

whe case;

n

end

end process;

end MpP;

Physical types:

These are used to represent real world physicditiggssuch as length, mass, time and

current.

Type IS range to

Units identifier;

{(identifier=physical literal;)}

end units identifier;

Examples:

(1) Typ resistancés range0 to 1E9
e

units

ohms; Q/
kohms = 10000hms; )
Q/ \ o

O
,Q ?
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Mohms = 1000kohms;
end units;

(2)Typ currentis  rangeO to 1E9
e units

na;

ua = 1000na;

ma = 1000ua;

a= 1000ma;
end units;

Composite Types:

Composite types consist of array and record types.

0 Array types are groups of elements of same type

[ Record allow the grouping of elements of differtypes

0 Arrays are used for modeling linear structures ascROM, RAM

[ Records are useful for modeling data packets,uostm etc.

[0 A composite type can have a value belonging teee#hscalar type, composite type
or an access type.

Array Type:

Array type groupare one or more elements of theedgpe together as a single object.
Each element of the array can be accessed by one& ray indices.

Typ data-buss array (Oto 31 % B! %

vy

e

Variable X:  data-bus: j
Variable y:  pjt-

Y = x(0);

Y := x(15); _ .

Typ address_worgs array(0 to _ BIT;

e -

Typ data_words array(7 da@w Oyof std_logic;
e

Typ ROM array(0to 255) of data_word,
e is

We can declare array objects of type mentioned @lsviollows:

Variable ROM_data: ROM,;
Signal Address_bus: Address_word;
Signal word: data_word,

Elements of an array can be accessed by specifygnopdex values into the array.
X<= Address_bus(25); transfers 26th element ofya@ddress _bus to X.

Y := ROM_data(10)(5); transfers the value of 5tneént in 10th row.

Multi dimentional array types may also be definathwwo or more dimensions. The
following example defines a two-dimensional arrayiable, which is a matrix of
integers with four rows and three columns:

Type matrix4x3is array (1 to 4, 1 to 3pf integer;

Variable matrixA: matrix4x3 := ((1,2,3), (4,5,6), (7,8,910,11,12));

Variable m:integer;

The viable matrixA, will be initialized to

123
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456

789

101112

The array element matrixA(3,2) references the etgnmethe third row and second
column, which has a value of 8.

m := matrixA(3,2); m gets the value 8

Record Type:

Record Types group objects of many types togetharsingle object. Each element of
the record can be accessed by its field name.

Record elements can include elements of any tygadimng arrays and records.
Elements of a record can be of the same type fardift types.

Example:

Typ optype is(add, sub, mpy, div, cmp);

e

Type instructionis

Record

Opcode : optype;

Src : integer,

Dst - Integer;

End record;

Structure of Verilog module: )

module module_name(signal_W' b% ~

Signal_type signal_name$f CO
Signal_type signal_names; Q/ >
Aasign statements & '
Assign statements 0 N

Endmodule_name ‘Q

Verilog Ports:
B Input: The port is only an input port.l. In any igssnent statement, the port
should appear only on the right hand side of tagestent
B Output: The port is an output port. The port capeap on either side of the
assignment statement.
B Inout: The port can be used as both an input &wutphe inout represents a
bidirectional bus.
Verilog Value Set:

m O represents low logic level or false condition
"1 represents high logic level or true condition
m X represents unknown logic level
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m z represents high impedance logic level

Verilog Operators

Operators in Verilog are the same as operatorsoigramming languages. They take two
values and compare or operate on them to yieldaarasult. Nearly all the operators in
Verilog are exactly the same as the ones in theoGramming language.

Arithmetic  * Multiply

Addition

%  Modulus

ss than or equal to

Inequallty
———
Logical And
___
Shift >> Right Shift
] |
Conditional  ? Conditional
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Bitwise nand

Bitwise nor

%Q’

og

O
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Examples:

x =y + z; /Ix will get the value of y added teethalue of z

x =1>>6; //xwill getthe value of 1 shifteigint by 5 positions

x =1y [Ix will get the value of y inverted. If gil, x is 0 and vise versa

Verilog Data Types:

Nets (i)

an be thought as hardware wires driven by logic

Equalzwhen unconnected

Various types of nets

wire

wand (wired-AND)

wor  (wired-OR)

tri (tri-state)

In following examples: Y is evaluateaytomatically every time A or B changes

Nets (ii)

g <
i vy S %Qz
\/ C{)bs' s ’
. | Qe
wire Y; // declaration 0 N

assign Y = A &B; ‘Q .

A

Y

B > wand Y; /I declaration

assign Y = A, assign Y = B;
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wor Y; /I declaration
assign Y = A, assign Y = B;

dr
A Y

triY; )
' /I declaration

assign Y = (dr)? A 1 Z;
Registers:

Variables that store values

Do not represent real hardware but ..

.. real hardware can be implemented with registers
Only one type: reg

reg A, C; // declaration

I/l assig nmentare always done inside a procedure
A=1,

C = A; /] C gets the logical value
A=0;//Cisstill 1 ‘
C=0;//CisnowO

B Register values are upda

Vectors: CO P
B Represent buses Q/ N
wire [3:0] busA; &
reg [1:4] busB; 0 O

reg [1:0] busC;
B Left number is MS bit ‘Q
B Slice management
busC[1] = busA[2];
busCJ[0] = busA[1];
B Vector assignmenby position!)
busB[1] = busA[3];
busB[2] = busA[2];
busB[3] = busA[1];
busB[4] = busA[O0];
Integer & Real Data Types:
B Declaration
integer i, k;
real r;
Use as registers (inside procedures)
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i = 1; /l assignments occur inside procedure
r=2.9;
k=r;//kisrounded to 3

B Integers are not initialized!!

B Reals are initialized 0.0

Parameters:
B Parameters represents global constants.They derelkby the predefined word
parameter.
module comp_genr(X,Y,XgtY,XItY,XeqY);
parameter N = 3;
input [ N :0] X,Y;
output XgtY,XItY,XeqY;
wire [N:0] sum,Yb;

Time Data Type:

B Special data type for simulation time measuring
B Declaration
time my_time;
B Use inside procedure )
my_time = $time; // get cL
B Simulation runs at simulation tim
Arrays (i): ¢
Syntax Qfo N
integer count[1:5]; // 5 integer& .
reg var[-15:16]; // 32 1-bit r O
reg [7:0] mem[0:1023]; /@ 8:bit regs
Accessing array elements
Entire element: mem[10] = 8’b 10101010;
Element subfield (needs temp storage):
reg [7:0] temp;

temp = mem[10];
var[6] = temp[2];
Strings: Implemented
with regs:

reg [8*13:1] string_val; // can hold up to 13 chars

string_val = “Hello Verilog”;
string_val = “hello”; // MS Bytes are filled with O
string_val = “I am overflowed”; // “1 " is truncatk
Escaped chars:
\n newline
\t tab
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%% %
\\ \
\ «
Styles(Types) of Descriptions:

B Behavioral Descriptions

B Structural Descriptions

B Switch — Level Descriptions

B Data — Flow Descriptions

B Mixed Type Descriptions

Behavioral Descriptions:

VHDL Behavioral description

entity half_add is

port (11, 12 : in bit; O1, O2 : out bit);
end half_add;
architecture behave_ex of half_add is
--The architecture consists of a process construct
begin
process (11, 12)
--The above statement is process statement begin
01 <= 11 xor 12 after 10 ns;
02 <=1 and 12 after 10 p Q;

end process; ‘.
end behave_ex; %
Verilog behavioral Descriptio\N'\Z’/' b‘ “
module half_add (11, 12, O1, O2); CO o

input 11, 12; Q/ N

output 01, 02; & .

reg 01, O2; 0 O

always @(11, 12) ,Q

/IThe above abatement isyalways

/IThe module consists of always construct

begin
#1001 =11"12;
#1002 =11& 12;
end
endmodule

VHDL Structural Descriptions:
entity system is
port (a, b : in bit;
sum, cout : out bit);
end system;
architecture struct_exple of system is
component xor2
--The above statement is a component statement
port(11, 12 : in bit;
O1 : out bit);
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end component;
component and2
port(I1, 12 : in bit;
O1 : out bit);
end component;
begin
X1 : xor2 port map (a, b, sum);
Al : and2 port map (a, b, cout);
end struct_exple;
Verilog Structural Description:
module system(a, b, sum, cout);
input a, b;
output sum, cout;
xor X1(sum, a, b);
/[The above statement is EXCLUSIVE-OR gate
and al(cout, a, b);
/[The above statement is AND gate
endmodule
Switch Level Descriptions:
VHDL Description:
library IEEE;
use IEEE.STD_LOGIC 1164 A%
entity Inverter is
Port (y : out std_logic; a: i
end Inverter; CO
architecture Invert_switch of Inverte
component nmos
--nmos is one of the key words@ iteh- Ievel
port (O1: out std_logic; I1, h 'std_logic);
end component;
component pmos
--pmos is one of the key words for switch-level.
port (O1: out std_logic ;I1, 12 : in std_logic);
end component;
for all: pmos use entity work. mos (pmos_behavjoral
for all: nmos use entity work. mos (nmos_behavjoral
--The above two statements are referring to a gpekaos
--See details in Chapter 5
constant vdd: std_logic :="1";
constant gnd : std_logic:='0';
begin
pl : pmos port map (y, vdd, a);
nl: nmos port map (y, gnd, a);
end Invert_switch;
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Verilog switch — Level Description:
module invert(y,a);
input a;
output Y;
supplyl vdd;
supplyO gnd;
pmos pl(y, vdd, a);
nmos nl(y, gnd, a);
--The above two statement are using the two prmstipmos and nmos
endmodule
Data — Flow Descriptions:
VHDL Data — Flow Description:
entity halfadder is
port (a,b: in bit;
s,C: out bit);
end halfadder;
architecture HA_DtFl of halfadder is

begin

S <= a xor b;

c<=aandb; . Qf
end HA_DtFl,
Verilog Data — Flow Descripiic

module halfadder (a,b,s,c); bgg\’ 3
input a; CO :
input b; &Q/ o
output s; -
O

output c;
assign s =a”"b; Q
assignc=a&hb;

endmodule

5.6 Comparision of VHDL & Verilog:

B Data Types

VHDL: Types are in built in or the user can creael define them.User defined
types give the user a tool to write the code effett. VHDL supports
multidimensional array and physical type.

Verilog: Verilog data types are simple & easy te.ushere are no user defined types.
B Ease of Learning

VHDL:Hard to learn because of its rigid type reguomnents.

Verilog: Easy to learn,Verilog users just write thedule without worrying about
what Library or package should be attached.

B Libraries and Packages

VHDL:Libraries and packages can be attached to 8tandard VHDL
package.Packages can include procedures and fusclche package can be made
available to any module that needs to use it.
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Verilog:No concept of Libraries or packages in hgyi

B Operators

VHDL:An extensive set of operators is availablé/iHDL,but it does not have
predefined unary operators.

Verilog: An extensive set of operators is also ke in verilog. It also has
predefined unary operators.

B Procedures and Tasks

VHDL:Concurrent procedure calls are allowed. THIeves a function to be written
inside the procedure’s body.This feature may cbuate to an easier way to describe a
complex system.

Verilog:Concurrent task calls are allowed.Functiars not allowed to be written in
the task’s body.

ASSIGNMENT QUESTIONS
1) Explain entity and architecture with an example
2) Explain structure of verilog module with an example
3) Explain VHDL operators in detail.
4) Explain verilog operators in detail.
5) Explain how data types are classified in HDL. Mentthe advantages of VHDL data

types over verilog.
6) Mention the types of HDL descri& ns, Explain %d behavioral descriptions

7) Describe different types of HE{ cripti ble example.
8)Mention different styles (types) &} d cr@ﬁxp&in mixed type and mixed

language descriptions.
9) Compare VHDL and Verilog !
10) Write the result of all shift and mé&aerratidlmHDL after applying themto a 7

N

bit vector A =1001010 .
11) Explain composite and accé%ata'types with amgbesfor each.
12) Discuss different logical operators used in HDL’s
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5.7 DATA FLOW DESCRIPTIONS
Data flow is one type(style) of hardware descriptio
Facts
0 Data — flow descriptions simulate the system bywshg how the signal flows
from system inputs to outputs.
[0 Signal — assignment statements are con ucrer@mAsimulation time, all signal-
assignment statements that have an event are egemcurrently.
5.8 VHDL Description and structure
entity system is
port (11, 12 : in bit; O1, O2 : out bit);
end,
architecture dtfl_ex of system is
begin
01 <= 11 and I2; -- statement 1.
02 <= 11 xor 12; -- statement 2.

--Statements 1 and 2 are signal-assignment statemen

end dtfl_ex;

Verilog Description A Q/@
module system (11, 12, O1, C %
input 11, 12;
output O1, O2;

I*by default all the above inputs and ou@ amtslgnals */
assign O1 = [1&I2; // statem

assign 02 = 11"M2; // state N
[*Statements 1 and 2 are contin@s signal-assighstatements*/

endmodule
Signal Declaration and Assignment Statements:
Syntax:
signallist_of _signal_namegdype [ := initial value];
Examples:

signal SUM, CARRY: std_logic;
signal DATA_BUS: bit_vector (0 to 7);
signal VALUE: integer range 0 to 100;
B Signals are updated after a delta delay.
Example:
SUM <= (A xor B);

B The result of A xor B is transferred to SUM aftedleday called simulation Delta
which is a infinitesimal small amount of time.
Constant:
Syntax:
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constantlist_of name_of constantype [:=initial value] ;

Examples:
constant RISE_FALL_TME: time := 2 ns;
constant DELAY1: time := 4 ns;

HDL Code for Half Adder—VHDL and Verilog:

a

]

e

VHDL Half Adder Description

entity halfadder is

port (
a : in bhit;

b : in bit;
S : out bit; Q’
c : out bit);

A
end halfadder; % .
architecture HA_DtFl of haIW b& o
begin CO A

S <= axor b; -- This is a signa @gnmént statem
c<=aandb;--Thisis a sig@signment Statgm
end HA_DtFlI; )

Verilog Half Adder Description

module halfadder (a, b, s, ¢);

input a;

input b;

output s;

output c;

[*The default type of all inputs and outputs isragte bit. */
assign s = a” b; /* This is a signal assignmeatestent;

Nis a bitwise xor logical operator. */

assign c = a & b; /* This is a signal assignmeateshent
& ia bitwise logical “and” operator */
endmodule
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5.8 Data type-vectors

HDL Code of a 2x1 Multiplexer—VHDL and Verilog:
VHDL 2x1 Multiplexer Description :
A 54

Fig: 2x1 Multiplexer (a)ogic diagrar

library IEEE; \/

use IEEE.STD_LOGIC 1164.ALL; co ;
entity mux2x1 is Q/

port (A, B, SEL, Gbar : in std_l@’g{ \
Y : out std_logic); -
end mux2x1; ’Q '

architecture MUX_DF of mux2x1 is
signal S1, S2, S3, S4, S5 : std_logic;
Begin

-- Assume 7 nanoseconds propagation delay
-- for all and, or, and not.

stl: Y <= S4 or S5 after 7 ns;

st2: S4 <= A and S2 and S1 after 7 ns;
st3: S5 <= B and S3 and S1 after 7 ns;
st4: S2 <= not SEL after 7 ns;

sts: S3 <= not S2 after 7 ns;

st6: S1 <= not Gbar after 7 ns;

end MUX_DF;
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Verilog Description: 2x1 Multiplexer
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
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output Y;
wire S1, S2, S3, S4, S5;

[* Assume 7 time units delay for all and, or, not.
In Verilog we cannot use specific time units,
such as nanoseconds. The delay here is
expressed in simulation screen units. */

assign #7Y =S4 |S5; /lstl

assign #7 S4 = A & S2 & S1; /Ist2

assign #7 S5 =B & S3 & S1,; //st3

assign #7 S2 = ~ SEL; //st4

assign #7 S3 = ~ S2;//st5

assign #7 S1 = ~ Gbar; //st6

endmodule
HDL Code for a 2x2 Unsigned Combinational Array Multiplier—VHDL and
Verilog:

VHDL 2x2 Unsigned Combinational Array Multiplier De scription :
= i e L Q/
= \ &
[7 ] \/ bgsg
library IEEE; ‘Q

use IEEE.STD_LOGIC_1164.ALL;

entity mult_arry is
port (a, b : in std_logic_vector(1 downto 0);
P : out std_logic_vector (3 downto 0));

end mult_arry;

architecture MULT_DF of mult_arry is

begin

-- For simplicity propagation delay times are nomsidered

-- in this example.

P(0) <= a(0) and b(0);

P(1) <=(a(0) and b(1)) x or @1 and b(0));

P(2) <= (a(1) and b(1)) xor ((a(0) and b(1)) and.Yand
b(0)));

P(3) <=(a(1) and b(1)) and ((a(0) and b(1)) ar{d)(and
b(0)));
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end MULT_DF;

Verilog 2x2 Unsigned Combinational Array Multiplier Description
module mult_arry (a, b, P);

input [1:0] a, b;

output [3:0] P;

[*For simplicity, propagation delay times are not

considered in this example.*/

assign P[0] = aJ0] & b[O];

assign P[1] = (a[0] & b[1]) ~ (a[1] & b[O]);

assign P[2] = (a[1] & b[1]) " ((a[0] & b[1]) & (a[1& b[0]));
assign P[3] = (a[1] & b[1]) & ((a[0] & b[1])& (a[1]& b[0]));
endmodule

HDL Code for a D-Latch—VHDL and Verilog:

VHDL D-Latch Description:
D
: 4 %@
. %‘Q

[ ’QZ/

library IEEE; N
use IEEE.STD_LOGIC_11

entity D_Latch is
port (D, E : in std_logic;

Q, Qbar : buffer std_logic);
-- Q and Qbar are declared as buffer because tieysa
--both input and output, they appear on the rigiat left
--hand side of signal assignment statements. ioout
-- linkage could have been used instead of buffer.
end D_Latch;

architecture DL_DtF| of D_Latch is

constant Delay EorD : Time := 9 ns;

constant Delay _inv : Time := 1 ns;

begin

--Assume 9-ns propagation delay time between
--E or D and Qbar; and 1 ns between Qbar and Q.
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Qbar <= (D and E) nor (not E and Q) after Delay (Eor
Q <= not Qbar after Delay_inv;

end DL_DtFl,

Verilog D-Latch Description:
module D_latch (D, E, Q, Qbar);
input D, E;

output Q, Qbar;

/* Verilog treats the ports as internal ports,
so Q and Qbar are not considered here as
both input and output. If the port is
connected externally as bidirectional,

then we should use inout. */

time Delay EorD = 9;
time Delay_inv = 1;
assign #Delay oBED Qbar = ~((E & D)

(~E &Q));
assign #Delay_inv Q = ~ Qbar; Q;
endmodule 3 Q,

HDL Code of a 2x2 Magnitude

%&and Verilog:

VHDL 2x2 Magnitude Comparator I:%; tion:
library IEEE;
use IEEE.STD_LOGIC 1164@

entity COMPR_2 is

port (x, y : in std_logic_vector(1 downto 0); xgty,
xlty : buffer std_logic; xeqy : out std_logic);

end COMPR_2;

architecture COMPR_DFL of COMPR_2 is
begin
xgty <= (x(1) and not y(1)) or (x(0) and not y(¥)ca
not y(0)) or
x(0) and x(1) and not y(0));
xlty <= (y(1) and not x(1)) or ( not x(0) and y(0)
and y(1)) or
(not x(0) and not x(1) and y(0));
xeqy <= xgty nor xlty;
end COMPR_DFL,;
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Verilog 2x2 Magnitude Comparator Description
module compr_2 (X, y, xgty, xlty, xeqy);

input [1:0] X, y;

output xgty, xlty, xeqy;

assign xgty = (X[1] & ~ y[1]) | (x[0] & ~ y[1]

- &~y[0]) | (x[0] & x[1] & ~ y[O]);
assign xlty = (y[1] & ~ x[1] ) | (~ x[0] & y[0] & ¥1]) |
(~ x[0] & ~ x[1] & y[O]);
assign xeqy = ~ (xgty | xlty);
endmodule

7

AR
'QQ
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3-Bit Ripple-Carry Adder Case Study—VHDL and Verilog

VHDL 3-Bit Ripple-Carry Adder Case Study Description

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity adders_RL is
port (X, y : in std_logic_vector (2 downto 0);
cin : in std_logic;
sum : out std_logic_vector (2 downto 0);
cout : out std_logic);
end adders_RL; %Q

)
~-I. RIPPLE-CARRY ADDEP\/ s g\'f»

architecture RCarry_DtFI of adders .
--Assume 4.0-ns propagation de all gates.
signal c0, c1 : std_logic;

N
constant delay_gt : time ::@@ o

begin
sum(0) <= (x(0) xor y(0)) xor cin after 2*delay_gt;

--Treat the above statement as two 2-input XOR.
sum(1) <= (x(1) xor y(1)) xor cO after 2*delay_gt;

--Treat the above statement as two 2-input XOR.
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sum(2) <= (x(2) xor y(2)) xor c1 after 2*delay_gt;

--Treat the above statement as two 2-input XOR.

c0 <= (x(0) and y(0)) or (x(0) and cin) or (y(0)dacin)
after 2*delay_gt;

cl <= (x(1) and y(1)) or (x(1) and0) or (y(1) and c0)
after 2*delay_gt;

cout <= (x(2) and y(2)) o(rx(2) and c1) or (y(2) and c1)
after 2*delay_gt;

end RCarry_DtFl,

Verilog 3-Bit Ripple-Carry Adder Case Study Descrigion
module adr_rcla (x, y, cin, sum, cout);
input [2:0] X, Y;
input cin;
output [2:0] sum;
output cout;
/I'l. RIPPLE CARRY ADDER
wire c0, c1;
time delay _gt=4
//Assume 4.0-ns propagation ds /

assign #(2*delay_gt) sum|[ g‘?’
/[Treat the above statement as. v 2-

assign #(2*delay_gt) sum[1] = (qué 1) Ac
/[Treat the above statement a mput XOR

assign #(2*delay_qgt) sum[2‘]9(><[2] Ny[2]) N el
/[Treat the above statement as two 2-input XOR.

assign #(2*delay_gt) cO = (x[0] & y[0]) | (x[O] &im)
| (y[O] & cin);

assign #(2*delay_gt) c1 = (x[1] & y[1]) | (X[1] &3
| (y[1] & c0);

assign #(2*delay_gt) cout = (x[2] & y[2]) | (X[2] &1)
| (y[2] & c1);
endmodule
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3-Bit Carry-Lookahead Adder Case Study—VHDL and Veiilog

VHDL 3-Bit Carry-Lookahead Adder Case Study Descrigion

--Il. CARRY-LOOKAHEAD ADDER

Carry Generator

1-Bit Adder

Pl 1y

architecture |kh_DtFl of adders_RL is

--Assume 4.0-ns propagation delay for all gates

--including a 3-input xor.
signal c0, c1 : std_logic;

signal p, g : std_logic_vector (2‘ wimto 0);

constant delay_gt : time := 4

begin

g(0) <= x(0) and y(0) after M

g(1) <=x(1) and y(1) after delay
0(2) <= x(2) and y(2) after delaév
p(0) <= x(0) or y(0) after t;

d
p(1) <= x(1) or y(1) after d@_gt;”
p(2) <= x(2) or y(2) after delay_gt;

>

S,

N

1-Bit Adder

\

3

c0 <=g(0) or (p(0) and cin) after 2*delay_gt;

2
D

cl <=g(1) or (p(1) and g(0)) or (p(1) and p(0)
and cin) after 2*delay_gt;

cout <= g(2) or (p(2) and g(1)) op(2) and p(1)

and g(0)) or

7

(p(2) and p(1) and p(0) and ) after 2*delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt;
sum(1) <= (p(1) xor g(1)) xor cO after delay_gt;
sum(2) <= (p(2) xor g(2)) xor cl after delay_gt;

end Ikh_DtFl;
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/l'll. CARRY-LOOKAHEAD ADDER
module lkahd_adder (X, y, cin, sum, cout);
input [2:0] X, Y;
input cin;
output [2:0] sum;
output cout;
[*Assume 4.0-ns propagation delay for all gates
including a 3-input xor.*/

wire c0, cl,;

wire [2:0] p, g;

time delay gt =4

assign #delay_gt g[0] = x[0] & y[O];

assign #delay_gt g[1] = x[1] & y[1];

assign #delay_gt g[2] = x[2] & Y[2];

assign #delay_gt p[0] = x[O] | y[O];

assign #delay_gt p[1] = x[1] | y[1];

assign #delay_gt p[2] = x[2] | y[2];

assign #(2*delay_gt) c0 = g[0] | (p[0] & cin);

A

assign #(2*delay_gt) c1 = gil| %&‘5

(p[1] & p[0] & cin);

assign #(2*delay_gt) cout = g[@bﬁ]\& o[1]id[2] &
p[1] & g[0]) | (P[2] & p[1] @ €in);

assign #delay_ gt sum[0] = (p[0] ~ g[0]) ~ cin;
assign #delay_gt sum[1] = (p[1] * g[1])  cO;

assign #delay_gt sum[2] = (p[2] ~ g[2]) " c1;
endmodule
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