
Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

MODULE 2

Introduction to Combinational Logic Circuits and Ad vanced Combinational
Logic Circuits

Structure
2.1 Objevtive
2.2 Introduction
2.3 General approach
2.4 Decoders-BCD decoders, Encoders.
2.5 Digital multiplexers-using multiplexers as Boolean function generators & Design methods of

building blocks of combinational logics
2.6 Adders and Subtractors-Cascading full adders
2.7 Look ahead carry
2.8 Binary comparators. .
2.9 Outcome
2.10 Future Readings

2.1 Objevtive

• Ability to understand, analyze and design various combinational circuit.
•

2.2 Introduction
 The complex combinational circuits can be designed using fundamental circuits, this
fundamental circuits mean the we have considered half adder, full adder, the decoder. Now, we
will read how the combinational circuits can be designed using another fundamental circuits
called multiplexer
2.3 General approach
Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any
time, are determined by combining the values of the inputs. A combinational circuit consists of
logic gates whose outputs, at any time, are determined by combining the values of the inputs. For
n input variables, there are 2 n possible binary input combinations. For n input variables, there
are 2 n possible binary input combinations. For each binary combination of the input variables,
there is one possible binary value on each output. For each binary combination of the input
variables, there is one possible binary value on each output.

1. Design a combinational circuit that will multiply two two-bit binary values

Solution:
 1. input variables(A1,A0,B1,B0)
 output variables(P3,P2,P1,P0)
Construct a truth table

26

Digital system design

Dept.EEE, ATMECE, Mysuru

The output SOP equations are
P3=f(A1,A0,B1,B0)=∑(15)
P2=f(A1,A0,B1,B0)=∑(10,11,14)
P1=f(A1,A0,B1,B0)=∑(6,7,9,11,13,14)
P0=f(A1,A0,B1,B0)=∑(5,7,13,15)

The individually simplified equations are
P3=A1A0B1B0
P2=A1A0’B1+A1B1B0’
P1=A1’A 0B1+A0B1B0’+A
P0=A0B0

The output SOP equations are:

∑(15)
∑(10,11,14)
∑(6,7,9,11,13,14)
∑(5,7,13,15)

The individually simplified equations are

’+A 1B1’B 0+A1A0’B0

17EE35

27

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.4 Decoders-BCD decoders, Encoders.
A Decoder is a multiple input ,multiple output logic circuit.The block diagram of a decoder is as
shown below.

The most commonly used decoder is a n –to 2n decoder which ha n inputs and 2n Output lines .

3-to-8 decoder logic diagram

28

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

In this realization shown above the three inputs are assigned x0,x1,and x2, and the eight outputs
are Z0 to Z7.

Function specifc decoders also exist which have less than 2n outputs . examples are 8421 code
decoder also called BCD to decimal decoder. Decoders that drive seven segment displays also
exist

Realization of boolean expression using Decoder and OR gate

We see from the above truth table that the output expressions corrwespond to a single minterm.
Hence a n –to 2n decoder is a minterm generator. Thus by using OR gates in conjunction with a a
n –to 2n decoder boolean function realization is possible.

P1: to realize the Boolean functions given below using decoders…

•F1=Σm(1,2,4,5)

•F2=Σm(1,5,7)

29

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P2: A 3-to-8 Decoder constructed

P3: Design a binary 3-bit adder with a 74xxx138 and NAND gates.

S = f (x , y , z)= ∑m (1, 2 , 4 , 7) , C f (X , Y , Z) ∑m (3 , 5 , 6 , 7)

Encoder

It is a inverse of decoder having 2^n input and n output.

30

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P4: Decimal-to-BCD Encoder (74xxx147)
Inputs Outputs

1 2 3 4 5 6 7 8 9 D C B A
1
0

x
x
x
x
x
x
x
x

1
1
0

x
x
x
x
x
x
x

1
1
1
0

x
x
x
x
x
x

1
1
1
1
0

x
x
x
x
x

1
1
1
1
1
0

x
x
x
x

1
1
1
1
1
1
0

x
x
x

1
1
1
1
1
1
1
0

x
x

1
1
1
1
1
1
1
1
0
x

1
1
1
1
1
1
1
1
1
0

priority encoder

Several possible events may occur in an industrial system, and you want to identify an event

and assign and transmit a code to the control unit based on some priority.

Inputs Outputs
D3 D2 D1 D0 A1 A0 /V

0
0
0
0
1

0
0
0
1
X

0
0
1

X

X

0
1

X

X

+ 5 V
U 1

H P R I/BCD

1

2

3

4

5

6

1

2

4

74 LS 147

31

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.5 Digital multiplexers-using multiplexers as Boolean function generators. & Design
methods of building blocks of combinational logics.

Multiplexers also called data selectors are another MSI devices with a wide range of applications
in microprocessor and their peripherals design. The followind diagrams show the symbol and
truth table for the 4-to –1 mux.

P1: 4-to-1 Line Multiplexer

32

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P2: Consider the function F(A,B,C,D)=∑(1,3,4,11,12,13,14,15)\

 This function canbe implemented with an 8-to-1 line MUX (see Figure 7) A, B, and C are
applied to the select inputs as follows: A ⇒ S2 , B ⇒ S1, C ⇒ S0

Demultiplexers

• Perform the opposite function of multiplexers

• Placing the value of a single data input onto one of the multiple data outputs

 • Same implementation as decoder with enable

• Enable input of decoder serves as the data input for the demultiplexer

33

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P1: A 1-to-4 line Demux

The input E is directed to one of the outputs, as specified by the two select lines S1 and S0. D0 =
E if S1S0 = 00 ⇒ D0 = S1’ S0’ E

 D1 = E if S1S0 = 01 ⇒ D1 = S1’ S0 E

D2 = E if S1S0 = 10 ⇒ D2 = S1 S0’ E

D3 = E if S1S0 = 11 ⇒ D3 = S1 S0 E

A careful inspection of the Demux circuit shows that it is identical to a 2 to 4 decoder with
enable input.

Table for 1-to-4 line demultiplexer

34

Digital system design

Dept.EEE, ATMECE, Mysuru

2.6 Adders and Subtractors-
Consider adding two binary numbers together:

We see that the bit in the "two's" column is generated when the addition carried over. A half
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half
adder has two outputs: sum and
A+B/2, while carry is the result. This can be expressed as follows:

S= A xor B

C=AB

Full Adder:

Half-adders have a major limitation in that they cannot accept a carry bit from a previous stage,
meaning that they cannot be chained togeth
bits of a half-adder can also represent the result A+B=3 as sum and carry both being high.

As such, the full-adder can accept three bits as an input. Commonly, one bit is referred to as the
carry-in bit. Full adders can be cascaded to produce adders of any number of bits by daisy
chaining the carry of one output to the input of the next

The full-adder is usually shown as a single unit. The sum output is usually on the bottom on the
block, and the carry-out output is on the left, so the devices can be chained together, most
significant bit leftmost:

-Cascading full adders
Consider adding two binary numbers together:

that the bit in the "two's" column is generated when the addition carried over. A half
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half

and carry . Sum represents the remainder of the
A+B/2, while carry is the result. This can be expressed as follows:

adders have a major limitation in that they cannot accept a carry bit from a previous stage,
meaning that they cannot be chained together to add multi-bit numbers. However, the two output

adder can also represent the result A+B=3 as sum and carry both being high.

adder can accept three bits as an input. Commonly, one bit is referred to as the
Full adders can be cascaded to produce adders of any number of bits by daisy

chaining the carry of one output to the input of the next

adder is usually shown as a single unit. The sum output is usually on the bottom on the
out output is on the left, so the devices can be chained together, most

 Logic Symbol of Full adder

 17EE35

that the bit in the "two's" column is generated when the addition carried over. A half-
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half-

. Sum represents the remainder of the integer division

adders have a major limitation in that they cannot accept a carry bit from a previous stage,
bit numbers. However, the two output

adder can also represent the result A+B=3 as sum and carry both being high.

adder can accept three bits as an input. Commonly, one bit is referred to as the
Full adders can be cascaded to produce adders of any number of bits by daisy-

adder is usually shown as a single unit. The sum output is usually on the bottom on the
out output is on the left, so the devices can be chained together, most

35

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

Ripple Carry Adder:

A ripple carry adder is simply several full adders connected in a series so that the carry must
propagate through every full adder before the addition is complete. Ripple carry adders require
the least amount of hardware of all adders, but they are the slowest.

The following diagram shows a four-bit adder, which adds the numbers A[3:0] and B[3:0], as
well as a carry input, together to produce S[3:0] and the carry output

Propagation Delay in Full Adders

Real logic gates do not react instantaneously to the inputs, and therefore digital circuits have a
maximum speed. Usually, the delay through a digital circuit is measured in gate-delays, as this
allows the delay of a design to be calculated for different devices. AND and OR gates have a
nominal delay of 1 gate-delay, and XOR gates have a delay of 2, because they are really made up
of a combination of ANDs and ORs.

A full adder block has the following worst case propagation delays:

• From Ai or Bi to Ci+1: 4 gate-delays (XOR → AND → OR)
• From Ai or Bi to Si: 4 gate-delays (XOR → XOR)
• From Ci to Ci+1: 2 gate-delays (AND → OR)
• From Ci to Si: 2 gate-delays (XOR)

Because the carry-out of one stage is the next's input, the worst case propagation delay is then:

• 4 gate-delays from generating the first carry signal (A0/B0 → C1).
• 2 gate-delays per intermediate stage (Ci → Ci+1).

36

Digital system design

Dept.EEE, ATMECE, Mysuru

• 2 gate-delays at the last stage to produ
1 → Cn and Sn-1).

So for an n-bit adder, we have a total propagation delay,

This is linear in n, and for a 32
This is rather slow, and restricts the word length in our device somewhat. We would like to find
ways to speed it up.

2.7 Look ahead carry
A fast method of adding numbers is called carry
carry signal to propagate stage by stage, causing a bottleneck. Instead it uses additional logic to
expedite the propagation and generation of carry information, allowing fast addition at the
expense of more hardware.

In a ripple adder, each stage compares the carry
generates a carry-out signal C
functions.

The generate function, Gi, indicates whether that stage causes a carry
generated if no carry-in signal exists. This occurs if both the addends contain a 1 in that bit:

Gi = A i .B i

The propagate function, Pi, indicates whether a carry
the stage. This occurs if either the addends have a 1 in

 P i = A i + B i

Note that both these values can be calculated from the inputs in a constant time of a single gate
delay. Now, the carry-out from a stage occurs if that stage generates a carry (
carry-in and the stage propaga

delays at the last stage to produce both the sum and carry

bit adder, we have a total propagation delay, tp of:

, and for a 32-bit number, would take 66 cycles to complete the
This is rather slow, and restricts the word length in our device somewhat. We would like to find

A fast method of adding numbers is called carry-lookahead. This method doesn't require the
ropagate stage by stage, causing a bottleneck. Instead it uses additional logic to

expedite the propagation and generation of carry information, allowing fast addition at the

In a ripple adder, each stage compares the carry-in signal, Ci, with the inputs
Ci+1 accordingly. In a carry-lookahead adder, we define two new

, indicates whether that stage causes a carry
in signal exists. This occurs if both the addends contain a 1 in that bit:

, indicates whether a carry-in to the stage is passed to the carry
the stage. This occurs if either the addends have a 1 in that bit

Note that both these values can be calculated from the inputs in a constant time of a single gate
out from a stage occurs if that stage generates a carry (

in and the stage propagates the carry (Pi·Ci = 1)

 17EE35

ce both the sum and carry-out outputs (Cn-

bit number, would take 66 cycles to complete the calculation.
This is rather slow, and restricts the word length in our device somewhat. We would like to find

lookahead. This method doesn't require the
ropagate stage by stage, causing a bottleneck. Instead it uses additional logic to

expedite the propagation and generation of carry information, allowing fast addition at the

, with the inputs Ai and Bi and
lookahead adder, we define two new

, indicates whether that stage causes a carry-out signal Ci to be
in signal exists. This occurs if both the addends contain a 1 in that bit:

in to the stage is passed to the carry-out for

Note that both these values can be calculated from the inputs in a constant time of a single gate
out from a stage occurs if that stage generates a carry (Gi = 1) or there is a

37

Digital system design

Dept.EEE, ATMECE, Mysuru

C i+1 = A i B i + A i C i + B i C

C i+1 = A i B i + C i (A i + B i)

C i+1 = G i + P i C i

Truth table

Note that this does not require the carry
wait for changes to ripple through the circuit. In fact, a given stage's carry signal can be
computed once the propagate and generate signals are ready with only two more gate delays (one
AND and one OR). Thus the carry
therefore so can the sum.

The S, P, and G signals are all generated by a circuit called a "partial full adder" (PFA), which is
similar to a full adder.

For a slightly smaller circuit, the propagate signal can be taken as the output of the first
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take
two gate delays to produce, rather than just one.

C i

Note that this does not require the carry-out signals from the previous stages, so we don't have to
ripple through the circuit. In fact, a given stage's carry signal can be

computed once the propagate and generate signals are ready with only two more gate delays (one
AND and one OR). Thus the carry-out for a given stage can be calculated in constant tim

signals are all generated by a circuit called a "partial full adder" (PFA), which is

For a slightly smaller circuit, the propagate signal can be taken as the output of the first
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take
two gate delays to produce, rather than just one.

 17EE35

out signals from the previous stages, so we don't have to
ripple through the circuit. In fact, a given stage's carry signal can be

computed once the propagate and generate signals are ready with only two more gate delays (one
out for a given stage can be calculated in constant time, and

signals are all generated by a circuit called a "partial full adder" (PFA), which is

For a slightly smaller circuit, the propagate signal can be taken as the output of the first XOR
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take

38

Digital system design

Dept.EEE, ATMECE, Mysuru

A carry lookahead adder then contains
propagate and generate signals:

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
the length, n of the numbers. However, this
logic gates are available with a limited number of inputs, trees will need to be constructed to
compute these, and the overall computation time is logarithmic, O(ln(
better than the linear time for ripple adders.

2.8 Binary comparators
Another common and very useful combinational logic circuit is that of the
Comparator circuit. Digital or Binary Comparators are made up from
standard AND, NOR and NOT
terminals and produce an output depending upon the condition of those inputs.

Another common and very useful combinational logic circuit is that of the
Comparator circuit. Digital or Binary Comparators are mad
standard AND, NOR and NOT
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need
compare them and determine whether the value of input
to the value at input B etc. The digital comparator accomplishes this using several logic gates
that operate on the principles of
Comparator available and these are.

okahead adder then contains n PFAs and the logic to produce carries from the stage
propagate and generate signals:

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
of the numbers. However, this requires AND and OR gates with up to

logic gates are available with a limited number of inputs, trees will need to be constructed to
compute these, and the overall computation time is logarithmic, O(ln(n)), which is still much

linear time for ripple adders.

Another common and very useful combinational logic circuit is that of the
circuit. Digital or Binary Comparators are made up from

NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

Another common and very useful combinational logic circuit is that of the
circuit. Digital or Binary Comparators are made up from

NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need
compare them and determine whether the value of input A is greater than, smaller than or equal

etc. The digital comparator accomplishes this using several logic gates
that operate on the principles of Boolean Algebra. There are two main types of

available and these are.

 17EE35

PFAs and the logic to produce carries from the stage

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
requires AND and OR gates with up to n inputs. If

logic gates are available with a limited number of inputs, trees will need to be constructed to
)), which is still much

 Digital

digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

 Digital

gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need to be able to
is greater than, smaller than or equal

etc. The digital comparator accomplishes this using several logic gates
There are two main types of Digital

39

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

• 1. Identity Comparator – an Identity Comparator is a digital comparator that has only one
output terminal for when A = B either “HIGH” A = B = 1 or “LOW” A = B = 0

• 2. Magnitude Comparator – a Magnitude Comparator is a digital comparator which has
three output terminals, one each for equality, A = B greater than, A > B and less
than A < B

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for
example A (A1, A2, A3, …. An, etc) against that of a constant or unknown value such as B (B1,
B2, B3, …. Bn, etc) and produce an output condition or flag depending upon the result of the
comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would
produce the following three output conditions when compared to each other.

Which means: A is greater than B, A is equal to B, and A is less than B

This is useful if we want to compare two variables and want to produce an output when any of
the above three conditions are achieved. For example, produce an output from a counter when a
certain count number is reached. Consider the simple 1-bit comparator below.

1-bit Digital Comparator Circuit

Then the operation of a 1-bit digital comparator is given in the following Truth Table.

Digital Comparator Truth Table

Inputs Outputs

B A A > B A = B A < B

0 0 0 1 0

0 1 1 0 0

40

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

1 0 0 0 1

1 1 0 1 0

You may notice two distinct features about the comparator from the above truth table. Firstly, the
circuit does not distinguish between either two “0” or two “1”‘s as an output A = B is produced
when they are both equal, either A = B = “0” or A = B = “1”. Secondly, the output condition
for A = B resembles that of a commonly available logic gate, the Exclusive-NOR or Ex-
NOR function (equivalence) on each of the n-bits giving: Q = A ⊕ B

Digital comparators actually use Exclusive-NOR gates within their design for comparing their
respective pairs of bits. When we are comparing two binary or BCD values or variables against
each other, we are comparing the “magnitude” of these values, a logic “0” against a logic “1”
which is where the term Magnitude Comparator comes from.

As well as comparing individual bits, we can design larger bit comparators by cascading
together n of these and produce a n-bit comparator just as we did for the n-bit adder in the
previous tutorial. Multi-bit comparators can be constructed to compare whole binary or BCD
words to produce an output if one word is larger, equal to or less than the other.

A very good example of this is the 4-bit Magnitude Comparator. Here, two 4-bit words
(“nibbles”) are compared to each other to produce the relevant output with one word connected
to inputs A and the other to be compared against connected to input B as shown below.

4-bit Magnitude Comparator

Some commercially available digital comparators such as the TTL 74LS85 or CMOS 4063 4-bit
magnitude comparator have additional input terminals that allow more individual comparators to
be “cascaded” together to compare words larger than 4-bits with magnitude comparators of “n”-
bits being produced. These cascading inputs are connected directly to the corresponding outputs
of the previous comparator as shown to compare 8, 16 or even 32-bit words.

41

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

8-bit Word Comparator

When comparing large binary or BCD numbers like the example above, to save time the
comparator starts by comparing the highest-order bit (MSB) first. If equality exists, A = B then it
compares the next lowest bit and so on until it reaches the lowest-order bit, (LSB). If equality
still exists then the two numbers are defined as being equal.

If inequality is found, either A > B or A < B the relationship between the two numbers is
determined and the comparison between any additional lower order bits stops. Digital
Comparator are used widely in Analogue-to-Digital converters, (ADC) and Arithmetic Logic
Units, (ALU) to perform a variety of arithmetic operations.

42

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.9 Outcome
• Can create a appropriate truth table from the description of combinational logic

function.
• Able to design any logic circuit using MUX, DEMUX, encoders and decoders

based on the application such that the gates used in a circuits are reduced.

2.10 Future Readings

http://nptel.ac.in/courses/117105080/

https://www.youtube.com/watch?v=VnZLRrJYa2I

“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John M Yarbrough, 2011 edition.

43

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

MODULE 2

Introduction to Combinational Logic Circuits and Ad vanced Combinational
Logic Circuits

Structure
2.1 Objevtive
2.2 Introduction
2.3 General approach
2.4 Decoders-BCD decoders, Encoders.
2.5 Digital multiplexers-using multiplexers as Boolean function generators & Design methods of

building blocks of combinational logics
2.6 Adders and Subtractors-Cascading full adders
2.7 Look ahead carry
2.8 Binary comparators. .
2.9 Outcome
2.10 Future Readings

2.1 Objevtive

• Ability to understand, analyze and design various combinational circuit.
•

2.2 Introduction
 The complex combinational circuits can be designed using fundamental circuits, this
fundamental circuits mean the we have considered half adder, full adder, the decoder. Now, we
will read how the combinational circuits can be designed using another fundamental circuits
called multiplexer
2.3 General approach
Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any
time, are determined by combining the values of the inputs. A combinational circuit consists of
logic gates whose outputs, at any time, are determined by combining the values of the inputs. For
n input variables, there are 2 n possible binary input combinations. For n input variables, there
are 2 n possible binary input combinations. For each binary combination of the input variables,
there is one possible binary value on each output. For each binary combination of the input
variables, there is one possible binary value on each output.

1. Design a combinational circuit that will multiply two two-bit binary values

Solution:
 1. input variables(A1,A0,B1,B0)
 output variables(P3,P2,P1,P0)
Construct a truth table

26

Digital system design

Dept.EEE, ATMECE, Mysuru

The output SOP equations are
P3=f(A1,A0,B1,B0)=∑(15)
P2=f(A1,A0,B1,B0)=∑(10,11,14)
P1=f(A1,A0,B1,B0)=∑(6,7,9,11,13,14)
P0=f(A1,A0,B1,B0)=∑(5,7,13,15)

The individually simplified equations are
P3=A1A0B1B0
P2=A1A0’B1+A1B1B0’
P1=A1’A 0B1+A0B1B0’+A
P0=A0B0

The output SOP equations are:

∑(15)
∑(10,11,14)
∑(6,7,9,11,13,14)
∑(5,7,13,15)

The individually simplified equations are

’+A 1B1’B 0+A1A0’B0

17EE35

27

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.4 Decoders-BCD decoders, Encoders.
A Decoder is a multiple input ,multiple output logic circuit.The block diagram of a decoder is as
shown below.

The most commonly used decoder is a n –to 2n decoder which ha n inputs and 2n Output lines .

3-to-8 decoder logic diagram

28

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

In this realization shown above the three inputs are assigned x0,x1,and x2, and the eight outputs
are Z0 to Z7.

Function specifc decoders also exist which have less than 2n outputs . examples are 8421 code
decoder also called BCD to decimal decoder. Decoders that drive seven segment displays also
exist

Realization of boolean expression using Decoder and OR gate

We see from the above truth table that the output expressions corrwespond to a single minterm.
Hence a n –to 2n decoder is a minterm generator. Thus by using OR gates in conjunction with a a
n –to 2n decoder boolean function realization is possible.

P1: to realize the Boolean functions given below using decoders…

•F1=Σm(1,2,4,5)

•F2=Σm(1,5,7)

29

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P2: A 3-to-8 Decoder constructed

P3: Design a binary 3-bit adder with a 74xxx138 and NAND gates.

S = f (x , y , z)= ∑m (1, 2 , 4 , 7) , C f (X , Y , Z) ∑m (3 , 5 , 6 , 7)

Encoder

It is a inverse of decoder having 2^n input and n output.

30

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P4: Decimal-to-BCD Encoder (74xxx147)
Inputs Outputs

1 2 3 4 5 6 7 8 9 D C B A
1
0

x
x
x
x
x
x
x
x

1
1
0

x
x
x
x
x
x
x

1
1
1
0

x
x
x
x
x
x

1
1
1
1
0

x
x
x
x
x

1
1
1
1
1
0

x
x
x
x

1
1
1
1
1
1
0

x
x
x

1
1
1
1
1
1
1
0

x
x

1
1
1
1
1
1
1
1
0
x

1
1
1
1
1
1
1
1
1
0

priority encoder

Several possible events may occur in an industrial system, and you want to identify an event

and assign and transmit a code to the control unit based on some priority.

Inputs Outputs
D3 D2 D1 D0 A1 A0 /V

0
0
0
0
1

0
0
0
1
X

0
0
1

X

X

0
1

X

X

+ 5 V
U 1

H P R I/BCD

1

2

3

4

5

6

1

2

4

74 LS 147

31

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.5 Digital multiplexers-using multiplexers as Boolean function generators. & Design
methods of building blocks of combinational logics.

Multiplexers also called data selectors are another MSI devices with a wide range of applications
in microprocessor and their peripherals design. The followind diagrams show the symbol and
truth table for the 4-to –1 mux.

P1: 4-to-1 Line Multiplexer

32

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P2: Consider the function F(A,B,C,D)=∑(1,3,4,11,12,13,14,15)\

 This function canbe implemented with an 8-to-1 line MUX (see Figure 7) A, B, and C are
applied to the select inputs as follows: A ⇒ S2 , B ⇒ S1, C ⇒ S0

Demultiplexers

• Perform the opposite function of multiplexers

• Placing the value of a single data input onto one of the multiple data outputs

 • Same implementation as decoder with enable

• Enable input of decoder serves as the data input for the demultiplexer

33

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

P1: A 1-to-4 line Demux

The input E is directed to one of the outputs, as specified by the two select lines S1 and S0. D0 =
E if S1S0 = 00 ⇒ D0 = S1’ S0’ E

 D1 = E if S1S0 = 01 ⇒ D1 = S1’ S0 E

D2 = E if S1S0 = 10 ⇒ D2 = S1 S0’ E

D3 = E if S1S0 = 11 ⇒ D3 = S1 S0 E

A careful inspection of the Demux circuit shows that it is identical to a 2 to 4 decoder with
enable input.

Table for 1-to-4 line demultiplexer

34

Digital system design

Dept.EEE, ATMECE, Mysuru

2.6 Adders and Subtractors-
Consider adding two binary numbers together:

We see that the bit in the "two's" column is generated when the addition carried over. A half
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half
adder has two outputs: sum and
A+B/2, while carry is the result. This can be expressed as follows:

S= A xor B

C=AB

Full Adder:

Half-adders have a major limitation in that they cannot accept a carry bit from a previous stage,
meaning that they cannot be chained togeth
bits of a half-adder can also represent the result A+B=3 as sum and carry both being high.

As such, the full-adder can accept three bits as an input. Commonly, one bit is referred to as the
carry-in bit. Full adders can be cascaded to produce adders of any number of bits by daisy
chaining the carry of one output to the input of the next

The full-adder is usually shown as a single unit. The sum output is usually on the bottom on the
block, and the carry-out output is on the left, so the devices can be chained together, most
significant bit leftmost:

-Cascading full adders
Consider adding two binary numbers together:

that the bit in the "two's" column is generated when the addition carried over. A half
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half

and carry . Sum represents the remainder of the
A+B/2, while carry is the result. This can be expressed as follows:

adders have a major limitation in that they cannot accept a carry bit from a previous stage,
meaning that they cannot be chained together to add multi-bit numbers. However, the two output

adder can also represent the result A+B=3 as sum and carry both being high.

adder can accept three bits as an input. Commonly, one bit is referred to as the
Full adders can be cascaded to produce adders of any number of bits by daisy

chaining the carry of one output to the input of the next

adder is usually shown as a single unit. The sum output is usually on the bottom on the
out output is on the left, so the devices can be chained together, most

 Logic Symbol of Full adder

 17EE35

that the bit in the "two's" column is generated when the addition carried over. A half-
adder is a circuit which adds two bits together and outputs the sum of those two bits. The half-

. Sum represents the remainder of the integer division

adders have a major limitation in that they cannot accept a carry bit from a previous stage,
bit numbers. However, the two output

adder can also represent the result A+B=3 as sum and carry both being high.

adder can accept three bits as an input. Commonly, one bit is referred to as the
Full adders can be cascaded to produce adders of any number of bits by daisy-

adder is usually shown as a single unit. The sum output is usually on the bottom on the
out output is on the left, so the devices can be chained together, most

35

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

Ripple Carry Adder:

A ripple carry adder is simply several full adders connected in a series so that the carry must
propagate through every full adder before the addition is complete. Ripple carry adders require
the least amount of hardware of all adders, but they are the slowest.

The following diagram shows a four-bit adder, which adds the numbers A[3:0] and B[3:0], as
well as a carry input, together to produce S[3:0] and the carry output

Propagation Delay in Full Adders

Real logic gates do not react instantaneously to the inputs, and therefore digital circuits have a
maximum speed. Usually, the delay through a digital circuit is measured in gate-delays, as this
allows the delay of a design to be calculated for different devices. AND and OR gates have a
nominal delay of 1 gate-delay, and XOR gates have a delay of 2, because they are really made up
of a combination of ANDs and ORs.

A full adder block has the following worst case propagation delays:

• From Ai or Bi to Ci+1: 4 gate-delays (XOR → AND → OR)
• From Ai or Bi to Si: 4 gate-delays (XOR → XOR)
• From Ci to Ci+1: 2 gate-delays (AND → OR)
• From Ci to Si: 2 gate-delays (XOR)

Because the carry-out of one stage is the next's input, the worst case propagation delay is then:

• 4 gate-delays from generating the first carry signal (A0/B0 → C1).
• 2 gate-delays per intermediate stage (Ci → Ci+1).

36

Digital system design

Dept.EEE, ATMECE, Mysuru

• 2 gate-delays at the last stage to produ
1 → Cn and Sn-1).

So for an n-bit adder, we have a total propagation delay,

This is linear in n, and for a 32
This is rather slow, and restricts the word length in our device somewhat. We would like to find
ways to speed it up.

2.7 Look ahead carry
A fast method of adding numbers is called carry
carry signal to propagate stage by stage, causing a bottleneck. Instead it uses additional logic to
expedite the propagation and generation of carry information, allowing fast addition at the
expense of more hardware.

In a ripple adder, each stage compares the carry
generates a carry-out signal C
functions.

The generate function, Gi, indicates whether that stage causes a carry
generated if no carry-in signal exists. This occurs if both the addends contain a 1 in that bit:

Gi = A i .B i

The propagate function, Pi, indicates whether a carry
the stage. This occurs if either the addends have a 1 in

 P i = A i + B i

Note that both these values can be calculated from the inputs in a constant time of a single gate
delay. Now, the carry-out from a stage occurs if that stage generates a carry (
carry-in and the stage propaga

delays at the last stage to produce both the sum and carry

bit adder, we have a total propagation delay, tp of:

, and for a 32-bit number, would take 66 cycles to complete the
This is rather slow, and restricts the word length in our device somewhat. We would like to find

A fast method of adding numbers is called carry-lookahead. This method doesn't require the
ropagate stage by stage, causing a bottleneck. Instead it uses additional logic to

expedite the propagation and generation of carry information, allowing fast addition at the

In a ripple adder, each stage compares the carry-in signal, Ci, with the inputs
Ci+1 accordingly. In a carry-lookahead adder, we define two new

, indicates whether that stage causes a carry
in signal exists. This occurs if both the addends contain a 1 in that bit:

, indicates whether a carry-in to the stage is passed to the carry
the stage. This occurs if either the addends have a 1 in that bit

Note that both these values can be calculated from the inputs in a constant time of a single gate
out from a stage occurs if that stage generates a carry (

in and the stage propagates the carry (Pi·Ci = 1)

 17EE35

ce both the sum and carry-out outputs (Cn-

bit number, would take 66 cycles to complete the calculation.
This is rather slow, and restricts the word length in our device somewhat. We would like to find

lookahead. This method doesn't require the
ropagate stage by stage, causing a bottleneck. Instead it uses additional logic to

expedite the propagation and generation of carry information, allowing fast addition at the

, with the inputs Ai and Bi and
lookahead adder, we define two new

, indicates whether that stage causes a carry-out signal Ci to be
in signal exists. This occurs if both the addends contain a 1 in that bit:

in to the stage is passed to the carry-out for

Note that both these values can be calculated from the inputs in a constant time of a single gate
out from a stage occurs if that stage generates a carry (Gi = 1) or there is a

37

Digital system design

Dept.EEE, ATMECE, Mysuru

C i+1 = A i B i + A i C i + B i C

C i+1 = A i B i + C i (A i + B i)

C i+1 = G i + P i C i

Truth table

Note that this does not require the carry
wait for changes to ripple through the circuit. In fact, a given stage's carry signal can be
computed once the propagate and generate signals are ready with only two more gate delays (one
AND and one OR). Thus the carry
therefore so can the sum.

The S, P, and G signals are all generated by a circuit called a "partial full adder" (PFA), which is
similar to a full adder.

For a slightly smaller circuit, the propagate signal can be taken as the output of the first
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take
two gate delays to produce, rather than just one.

C i

Note that this does not require the carry-out signals from the previous stages, so we don't have to
ripple through the circuit. In fact, a given stage's carry signal can be

computed once the propagate and generate signals are ready with only two more gate delays (one
AND and one OR). Thus the carry-out for a given stage can be calculated in constant tim

signals are all generated by a circuit called a "partial full adder" (PFA), which is

For a slightly smaller circuit, the propagate signal can be taken as the output of the first
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take
two gate delays to produce, rather than just one.

 17EE35

out signals from the previous stages, so we don't have to
ripple through the circuit. In fact, a given stage's carry signal can be

computed once the propagate and generate signals are ready with only two more gate delays (one
out for a given stage can be calculated in constant time, and

signals are all generated by a circuit called a "partial full adder" (PFA), which is

For a slightly smaller circuit, the propagate signal can be taken as the output of the first XOR
gate instead of using a dedicated OR gate, because if both A and B are asserted, the generate
signal will force a carry. However, this simplifiaction means that the propagate signal will take

38

Digital system design

Dept.EEE, ATMECE, Mysuru

A carry lookahead adder then contains
propagate and generate signals:

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
the length, n of the numbers. However, this
logic gates are available with a limited number of inputs, trees will need to be constructed to
compute these, and the overall computation time is logarithmic, O(ln(
better than the linear time for ripple adders.

2.8 Binary comparators
Another common and very useful combinational logic circuit is that of the
Comparator circuit. Digital or Binary Comparators are made up from
standard AND, NOR and NOT
terminals and produce an output depending upon the condition of those inputs.

Another common and very useful combinational logic circuit is that of the
Comparator circuit. Digital or Binary Comparators are mad
standard AND, NOR and NOT
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need
compare them and determine whether the value of input
to the value at input B etc. The digital comparator accomplishes this using several logic gates
that operate on the principles of
Comparator available and these are.

okahead adder then contains n PFAs and the logic to produce carries from the stage
propagate and generate signals:

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
of the numbers. However, this requires AND and OR gates with up to

logic gates are available with a limited number of inputs, trees will need to be constructed to
compute these, and the overall computation time is logarithmic, O(ln(n)), which is still much

linear time for ripple adders.

Another common and very useful combinational logic circuit is that of the
circuit. Digital or Binary Comparators are made up from

NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

Another common and very useful combinational logic circuit is that of the
circuit. Digital or Binary Comparators are made up from

NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need
compare them and determine whether the value of input A is greater than, smaller than or equal

etc. The digital comparator accomplishes this using several logic gates
that operate on the principles of Boolean Algebra. There are two main types of

available and these are.

 17EE35

PFAs and the logic to produce carries from the stage

Two numbers can therefore be added in constant time, O(1), of just 6 gate delays, regardless of
requires AND and OR gates with up to n inputs. If

logic gates are available with a limited number of inputs, trees will need to be constructed to
)), which is still much

 Digital

digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

 Digital

gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need to be able to
is greater than, smaller than or equal

etc. The digital comparator accomplishes this using several logic gates
There are two main types of Digital

39

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

• 1. Identity Comparator – an Identity Comparator is a digital comparator that has only one
output terminal for when A = B either “HIGH” A = B = 1 or “LOW” A = B = 0

• 2. Magnitude Comparator – a Magnitude Comparator is a digital comparator which has
three output terminals, one each for equality, A = B greater than, A > B and less
than A < B

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for
example A (A1, A2, A3, …. An, etc) against that of a constant or unknown value such as B (B1,
B2, B3, …. Bn, etc) and produce an output condition or flag depending upon the result of the
comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would
produce the following three output conditions when compared to each other.

Which means: A is greater than B, A is equal to B, and A is less than B

This is useful if we want to compare two variables and want to produce an output when any of
the above three conditions are achieved. For example, produce an output from a counter when a
certain count number is reached. Consider the simple 1-bit comparator below.

1-bit Digital Comparator Circuit

Then the operation of a 1-bit digital comparator is given in the following Truth Table.

Digital Comparator Truth Table

Inputs Outputs

B A A > B A = B A < B

0 0 0 1 0

0 1 1 0 0

40

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

1 0 0 0 1

1 1 0 1 0

You may notice two distinct features about the comparator from the above truth table. Firstly, the
circuit does not distinguish between either two “0” or two “1”‘s as an output A = B is produced
when they are both equal, either A = B = “0” or A = B = “1”. Secondly, the output condition
for A = B resembles that of a commonly available logic gate, the Exclusive-NOR or Ex-
NOR function (equivalence) on each of the n-bits giving: Q = A ⊕ B

Digital comparators actually use Exclusive-NOR gates within their design for comparing their
respective pairs of bits. When we are comparing two binary or BCD values or variables against
each other, we are comparing the “magnitude” of these values, a logic “0” against a logic “1”
which is where the term Magnitude Comparator comes from.

As well as comparing individual bits, we can design larger bit comparators by cascading
together n of these and produce a n-bit comparator just as we did for the n-bit adder in the
previous tutorial. Multi-bit comparators can be constructed to compare whole binary or BCD
words to produce an output if one word is larger, equal to or less than the other.

A very good example of this is the 4-bit Magnitude Comparator. Here, two 4-bit words
(“nibbles”) are compared to each other to produce the relevant output with one word connected
to inputs A and the other to be compared against connected to input B as shown below.

4-bit Magnitude Comparator

Some commercially available digital comparators such as the TTL 74LS85 or CMOS 4063 4-bit
magnitude comparator have additional input terminals that allow more individual comparators to
be “cascaded” together to compare words larger than 4-bits with magnitude comparators of “n”-
bits being produced. These cascading inputs are connected directly to the corresponding outputs
of the previous comparator as shown to compare 8, 16 or even 32-bit words.

41

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

8-bit Word Comparator

When comparing large binary or BCD numbers like the example above, to save time the
comparator starts by comparing the highest-order bit (MSB) first. If equality exists, A = B then it
compares the next lowest bit and so on until it reaches the lowest-order bit, (LSB). If equality
still exists then the two numbers are defined as being equal.

If inequality is found, either A > B or A < B the relationship between the two numbers is
determined and the comparison between any additional lower order bits stops. Digital
Comparator are used widely in Analogue-to-Digital converters, (ADC) and Arithmetic Logic
Units, (ALU) to perform a variety of arithmetic operations.

42

Digital system design 17EE35

Dept.EEE, ATMECE, Mysuru

2.9 Outcome
• Can create a appropriate truth table from the description of combinational logic

function.
• Able to design any logic circuit using MUX, DEMUX, encoders and decoders

based on the application such that the gates used in a circuits are reduced.

2.10 Future Readings

http://nptel.ac.in/courses/117105080/

https://www.youtube.com/watch?v=VnZLRrJYa2I

“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John M Yarbrough, 2011 edition.

43

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

MODULE 3

Flip Flops and Characteristic Equation

Structure
3.1 Objevtive
3.2 Introduction
3.3 Basic Bistable element
3.4 Latches, SR latch,
3.5 Application of SR latch,-A Switch debouncer.
3.6 The gated SR latch.
3.7 The gated D Latch,
3.8 The Master-Slave Flip-Flops (Pulse-Triggered Flip-Flops): The master-slave SR Flip-Flops,

The master-slave JK Flip-Flop,
3.9 Edge Triggered Flip-flop: The Positive Edge-Triggered D Flip-Flop, Negative-Edge

Triggered D Flip-Flop - Characteristic equations.
3.10 Registers,
3.11 Counters-Binary Ripple Counter, Synchronous Binary counters, Counters based on Shift

Registers,
3.12 Design of a Synchronous counters, Design of a Synchronous Mod-N counters using clocked

JK FlipFlops
3.13 Design of a Synchronous Mod-N counter using clocked D, T, or SR Flip-Flops.
3.14 Outcome
3.15 Future Readings

3.1 Objevtive

• To know different between latches and flip flops
• Data storage elements
• Designing of flip flops
• Design of synchronous Mod N for all the flip flops

3.2 Introduction

Logic circuit is divided into two types.

1. Combinational Logic Circuit

2. Sequential Logic Circuit

Definition :

1. Combinational Logic Circuit :

The circuit in which outputs depends on only present value of inputs. So it is possible to
describe each output as function of inputs by using Boolean expression. No memory
element involved. No clock input. Circuit is implemented by using logic gates. The
propagation delay depends on, delay of logic gates. Examples of combinational logic
circuits are : full adder, subtractor, decoder, codeconverter, multiplexers etc.

44

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

2. Sequential Circuits :

Sequential Circuit is the logic circuit in which output depends on present value of inputs
at that instant and past history of circuit i.e. previous output. The past output is stored by
using memory device. The internal data stored in circuit is called as state. The clock is
required for synchronization. The delay depends on propagation delay of circuit and
clock frequency. The examples are flip-flops, registers, counters etc.

3.3 Basic Bistable element

o Flip-Flop is Bistable element.

o It consist of two cross coupled NOT Gates.

o It has two stable states.

o Q and Q are two outputs complement of each other.

o The data stored 1 or 0 in basic bistable element is state of flip-flop.

o 1 – State is set condition for flip-flop.

o 0 – State is reset / clear for flip-flop.

o It stores 1 or 0 state as long power is ON.

Combinational

Logic Circuit

inputs
outputs

Combinational

Logic Circuit

inputs
outputs

Memory Device

45

Digital System Design

Dept. EEE, ATMECE, Mysuru

3.4 Latches, SR latch

S-R Latch : Set-reset Flip-Flop

� Latch is a storage device by using Flip

� Latch can be controlled by direct inputs.

� Latch outputs can be controlled by clock or enable input.

� Q and Q are present state for output.

� Q+ and Q+ are next states for output.

� The function table / Truth table gives relation between inputs and outputs.

� The S=R=1 condition is not allowed in SR FF as output is unpredictable.

3.5 Application of SR latch-

� A switch debouncer

Flop

Latch is a storage device by using Flip-Flop.

controlled by direct inputs.

Latch outputs can be controlled by clock or enable input.

Q are present state for output.

are next states for output.

The function table / Truth table gives relation between inputs and outputs.

ition is not allowed in SR FF as output is unpredictable.

 A Switch debouncer.

 17EE35

The function table / Truth table gives relation between inputs and outputs.

ition is not allowed in SR FF as output is unpredictable.

46

Digital System Design

Dept. EEE, ATMECE, Mysuru

� Bouncing problem with Push button switch.

� Debouncing action.

� SR Flip-Flop as switch debouncer.

3.6 The gated SR latch. Characteristic equations,

� Enable input C is clock input.

� C=1, Output changes as per input condition.

� C=0, No change of state.

� S=1, R=0 is set condition for Flip

� S=0, R=1 is reset condition for Flip

� S=R=1 is ambiguous state, not allowed.

3.7 The gated D Latch Characteristic equations,

Bouncing problem with Push button switch.

Flop as switch debouncer.

Characteristic equations,

Enable input C is clock input.

C=1, Output changes as per input condition.

S=1, R=0 is set condition for Flip-flop.

S=0, R=1 is reset condition for Flip-flop.

S=R=1 is ambiguous state, not allowed.

Characteristic equations,

 17EE35

47

Digital System Design

Dept. EEE, ATMECE, Mysuru

� D Flip-Flop is Data Flip

� D Flip-Flop stores 1 or 0.

� R input is complement of S.

� Only one D input is present.

� D Flip-Flop is a storage device used in register.

3.8 The Master-Slave Flip-Flops (Pulse
Flops, The master-slave JK Flip

� Two SR Flip-Flop, 1st

� Master Flip-Flop is positive edge triggered.

� Slave Flip-Flop is negative edge triggered.

Flop is Data Flip-Flop.

Flop stores 1 or 0.

R input is complement of S.

Only one D input is present.

Flop is a storage device used in register.

Flops (Pulse-Triggered Flip-Flops): The master
slave JK Flip-Flop Characteristic equations,

 is Master and 2nd is slave.

Flop is positive edge triggered.

Flop is negative edge triggered.

 17EE35

Flops): The master-slave SR Flip-

48

Digital System Design

Dept. EEE, ATMECE, Mysuru

� Slave follows master output.

� The output is delayed.

Master slave JK Flip-Flop Characteristic equations,

� In SR Flip-Flop the input combination S=R=1 is not allowed.

� JK FF is modified version of SR FF.

� Due to feedback from slave FF output to master, J=K=1 is allowed.

� J=K=1, toggle, action in FF.
This finds application in counter.

Slave follows master output.

The output is delayed.

Characteristic equations,

Flop the input combination S=R=1 is not allowed.

JK FF is modified version of SR FF.

Due to feedback from slave FF output to master, J=K=1 is allowed.

J=K=1, toggle, action in FF.
This finds application in counter.

 17EE35

Due to feedback from slave FF output to master, J=K=1 is allowed.

49

Digital System Design

Dept. EEE, ATMECE, Mysuru

3.9 Edge Triggered Flip-flop: The Positive Edge
Triggered D Flip-Flop. Characteristic equations,

Positive Edge Triggered D Flip

� When C=0, the output of AND Gate 2 & 3 is equal to 1.

� If C=1, D=1, the output of AND Gate 2 is 0 and 3 is 1.

3.10 Registers

� Register is a group of Flip

� It stores binary information 0 or 1.

� It is capable of moving data left or right with clock pulse.

� Registers are classified as

• Serial-in Serial

• Serial-in parallel

• Parallel-in Serial

S R 1, No Change= =

S R 1, Q =1 and = =0,

flop: The Positive Edge-Triggered D Flip-
Characteristic equations,

Positive Edge Triggered D Flip-Flop

When C=0, the output of AND Gate 2 & 3 is equal to 1.

If C=1, D=1, the output of AND Gate 2 is 0 and 3 is 1.

Register is a group of Flip-Flops.

It stores binary information 0 or 1.

It is capable of moving data left or right with clock pulse.

Registers are classified as

in Serial-Out

in parallel Out

in Serial-Out

 No Change of State

1 and Q = 0

 17EE35

-Flop, Negative-Edge

50

Digital System Design

Dept. EEE, ATMECE, Mysuru

• Parallel-in parallel Out

Parallel-in Unidirectional Shift Register

� Parallel input data is applied at I

� Parallel output QAQBQ

� Serial input data is applied to A FF.

� Serial output data is at output of D FF.

� L/Shift is common control input.

� L/S = 0, Loads parallel data into register.

� L/S = 1, shifts the data in one direction.

in parallel Out

in Unidirectional Shift Register

Parallel input data is applied at IAIBICID.

QCQD.

Serial input data is applied to A FF.

Serial output data is at output of D FF.

L/Shift is common control input.

L/S = 0, Loads parallel data into register.

L/S = 1, shifts the data in one direction.

 17EE35

51

Digital System Design

Dept. EEE, ATMECE, Mysuru

Universal Shift Register

� Bidirectional Shifting.

� Parallel Input Loading.

� Serial-Input and Serial

� Parallel-Input and Serial

� Common Reset Input.

� 4:1 Multiplexer is used to select register operation.

Bidirectional Shifting.

Loading.

Input and Serial-Output.

Input and Serial-Output.

4:1 Multiplexer is used to select register operation.

 17EE35

52

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

3.11 Counters-Binary Ripple Counter, Synchronous Binary counters, Counters based on
Shift Registers

� Counter is a register which counts the sequence in binary form.

� The state of counter changes with application of clock pulse.

� The counter is binary or non-binary.

� The total no. of states in counter is called as modulus.

� If counter is modulus-n, then it has n different states.

� State diagram of counter is a pictorial representation of counter states directed by arrows
in graph.

4-bit Binary Ripple Counter :

� All Flip-Flops are in toggle mode.

� The clock input is applied.

� Count enable = 1.

� Counter counts from 0000 to 1111.

000

100

111

110

101

001

010

011

Fig. State diagram of mod-8 counter

53

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Synchronous Binary Counter :

� The clock input is common to all Flip-Flops.

� The T input is function of the output of previous flip-flop.

� Extra combination circuit is required for flip-flop input.

54

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Counters Based on Shift Register

� The output of LSB FF is connected as D input to MSB FF.

� This is commonly called as Ring Counter or Circular Counter.

� The data is shifted to right with each clock pulse.

� This counter has four different states.

55

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

� This can be extended to any no. of bits.

Twisted Ring Counter or Johnson Counter

� The complement output of LSB FF is connected as D input to MSB FF.

� This is commonly called as Johnson Counter.

� The data is shifted to right with each clock pulse.

� This counter has eight different states.

� This can be extended to any no. of bits.

Mod-7 Twisted Ring Counter

� The D input to MSB FF is

� The counter follows seven different states with application of clock input.

� By changing feedback different counters can be obtained.

Q .QD C

56

Digital System Design 1E7E35

Dept. EEE, ATMECE, Mysuru

3.12 Design of a Synchronous counters, Design of a Synchronous Mod-N counters using
clocked JK Flip Flops

The clock input is common to all Flip-Flops.

Any Flip-Flop can be used.

For mod-n counter 0 to n-1 are counter states.

The excitation table is written considering the present state and next state of counter.

The flip-flop inputs are obtained from characteristic equation.

By using flip-flops and logic gate the implementation of synchronous counter is obtained.

Difference between Asynchronous and Synchronous Counter :

Asynchronous Counter Synchronous Counter

1. Clock input is applied to LSB FF. The output
of first FF is connected as clock to next FF.

1. Clock input is common to all FF.

2. All Flip-Flops are toggle FF. 2. Any FF can be used.

3. Speed depends on no. of FF used for n bit .

3. Speed is indepenSdent of no. of FF used.

4. No extra Logic Gates are required. 4. Logic Gates are required based on
design.

5. Cost is less. 5. Cost is more.

3.13 Design of a Synchronous Mod-N counter using clocked D, T, or SR Flip-Flops.
2Bit binary synchronous counter

57

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

The flip-flop delay time and possibility of glitches are overcome by the use of a synchronous
ornparallel counter. Every flip-flop is triggered in synchronism with the clock

3.14 Outcome

• Student will knoe the necessity of flip flops and its importance
• Design flip flops based on the characteristic equations.
• Will be able to design N Mod Synchronous counter

3.15 Future Readings

http://nptel.ac.in/courses/117105080/

https://www.youtube.com/watch?v=VnZLRrJYa2I

“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John M Yarbrough, 2011 edition

58

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Combinational
Logic Circuit

Memory

PS

NS

MODULE 4

Fundamentals of Sequential Design and Design of Advanced Sequential Machines
Structure
4.1 Objevtive
4.2 Introduction
4.3 Mealy and Moore models
4.4 State machine notation
4.5 synchronous sequential circuit analysis and design.
4.6 Construction of state Diagrams
4.7 Outcome
4.8 Future Readings

4.1 Objevtive

• To know about different models of a system and differentiate between them
• Designing of sequential circuit
• Designing of sequential circuit based on problem statement

4.2 Introduction

Definition :

In sequential networks, the outputs are function of present state and present external
inputs. Present state simply called as states or past history of circuit. The existing inputs
and present state for sequential circuit determines next state of networks.

inputs Outputs

Model of Sequential Network

Types of Sequential Network :

1. Asynchronous Sequential Network : The changes in circuit depends on changes
in inputs depending on present state. But the change in memory state is not at
given instant of time but depending on input.

2. Synchronous Sequential Network : Output depends on present state and present
inputs at a given instant of time. So timing sequence is required. So memory is
allowed to store the changes at given instant of time.

Structure and Operation of Clocked Synchronous Sequential Circuit :

In synchronous sequential circuit, the network behavior is defined at specific
instant of time associated with special timing. There is master clock which is common to
all FFs that is used in memory element. Such circuits are called as clocked synchronous

59

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

sequential circuit.

Clock : Clock is periodic waveform with one positive edge and one negative edge during each period.

1
0

t

+ ve edge - ve edge

This clock is used for network synchronization

Basic Operation of Clocked Synchronous Sequential Circuit

Q indicates all present state of FF.

Q+ indicates next state of FF in

network. X indicates all external

inputs.

Q+ = f(x,Q) This is next state of network.

Z indicates output signal of sequential networks.

Z = g(X,Q)

4.3 Mealy and Moore models

The structure shown in given figure is called as Mealy Model or Mealy Machine.

60

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

61

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

There are two types of finite state machines that generate output −

• Mealy Machine

• Moore machine

Mealy Machine

A Mealy Machine is an FSM whose output depends on the present state as well as the present
input.

It can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

• Q is a finite set of states.

• ∑ is a finite set of symbols called the input alphabet.

• O is a finite set of symbols called the output alphabet.

• δ is the input transition function where δ: Q × ∑ → Q

• X is the output transition function where X: Q × ∑ → O

• q0 is the initial state from where any input is processed (q0 ∈ Q).

The state table of a Mealy Machine is shown below −

Present state

Next state

input = 0 input = 1

State Output State Output

→ a b x1 c x1

b b x2 d x3

c d x3 c x1

d d x3 d x2

The state diagram of the above Mealy Machine is −

62

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Moore Machine
Moore machine is an FSM whose outputs depend on only the present state.

A Moore machine can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

• Q is a finite set of states.

• ∑ is a finite set of symbols called the input alphabet.

• O is a finite set of symbols called the output alphabet.

• δ is the input transition function where δ: Q × ∑ → Q

• X is the output transition function where X: Q → O

• q0 is the initial state from where any input is processed (q0 ∈ Q).

The state table of a Moore Machine is shown below −

Present state

Next State

Output

Input = 0 Input = 1

→ a b c x2

b b d x1

63

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

c c d x2

d d d x3

The state diagram of the above Moore Machine is −

Mealy Machine vs. Moore Machine
The following table highlights the points that differentiate a Mealy Machine from a Moore
Machine.

Mealy Machine Moore Machine

Output depends both
upon present state and
present input.

Output depends only upon the
present state.

Generally, it has fewer
states than Moore
Machine.

Generally, it has more states than
Mealy Machine.

Output changes at the
clock edges.

Input change can cause change in
output change as soon as logic is
done.

64

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Mealy machines react
faster to inputs

In Moore machines, more logic is
needed to decode the outputs since
it has more circuit delays.

Block Diagram of Mealy and Moore Machines

Difference between Mealy Model and Moore Model of Synchronous
Sequential Circuit

Mealy Model : In Mealy Model the next state is function of external inputs and
present state. The output is also function of external inputs and present state. The
memory state changes with master clock.

Q+ = f(X,Q) Z = g(X,Q)

Moore Model : In Moore Model the next state is function of external inputs and
present state. But the output is function of present state. It is not dependent on
external inputs. The no. of FFs required to implement circuit is more compared
with Mealy Model,

Q+ = f(X,Q) Z = g(Q)

65

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Logic Diagram for Mealy Network

��	 = 	���						 	+ ����								

�� = 	���				 	+	��				��	

� = 	����	 + ��	��	�

Logic Diagram for Moore Network

66

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Transition Tables :
Instead of using algebraic equations for next state and outputs of sequential network, it is more
convenient and useful to express the information in tabular form. The Transition Table or State Transition
Table or State Table is the tabular representation of the transition and output equations. This table consist
of Present State, Next State, external inputs and output variables. If there are n state variables then 2n
rows are present in state table.

4.4 State machine notation

Input Variables : External input variables to sequential machine as inputs.
Output Variables : All variables that exit from the sequential machine are output variables.
State : State of sequential machine is defined by the content of memory, when memory is realized by
using FFs.
Present State : The status of all state variable i.e. content of FF for given instant of time t is called as
present state.
Next State : The state of memory at t+1 is called as Next state.
State Diagram : State diagram is graphical representation of state variables represented by circle. The
connection between two states represented by lives with arrows and also indicates the excitation input and
related outputs.
Output Variables : All variables that exit from the sequential machine are output variables.

4.5 synchronous sequential circuit analysis and design.

67

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

68

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

Transition table for Moore Network

PS(Q1Q2)

NS(Q1+,Q2+)

O/p

(Z1Z2)
I/p XY

00 01 10 11

00 00 10 01 11 01

01 01 11 00 11 00

10 10 01 00 00 11

11 11 00 10 00 01

Synchronous Sequential Circuit

69

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

4.6 Construction of state Diagrams

State Tables :

State table consist of PS, NS and output section. The PS and NS of state tables are obtained by
replacing the binary code for each in the transition table by newly defined symbol. The output
section is identical to output section of transition table.

Symbols for state can be S1, S2, S3,……Sn or A, B, C, D, E….

State table for Mealy Machine

PS NS

O/p Z

00 – A C B 0 1

01 – B D D 0 0

10 – C C A 1 0

11 – D A A 1 0

State Diagram :

It is graphical representation of state tables. Each state of network is represented by labeled node.

Directed branches connect the nodes to indicate transition between states. The directed branches
are labeled according to the values of external input variable that permit transition. The output of
sequential network is also entered in state diagram. In case of Moore Network state diagram, thE
values of input for output is not written.

70

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

State diagram for Mealy Network

P1:

Analysis of Synchronous Circuit
The given circuit in above figure is Mealy Network and the output is function of input variable
and PS of FF. The analysis of above circuit is as follows.
The Excitation and Output Function

71

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

By substituting the FF inputs in characteristic equation, the next state of FF is obtained in
terms of PS of FF and external input.
The characteristic equation of JK FF is

The Excitation Table

State diagram

72

Digital System Design 17EE35

Dept. EEE, ATMECE, Mysuru

 ABCD Represnts present state

4.7 Outcome
• Will know difference between Milley and Moore model type of sequential circuits
• To write state diagram for sequential circuit or vice versa.

4.9Future Readings

http://nptel.ac.in/courses/117105080/

https://www.youtube.com/watch?v=VnZLRrJYa2I

“Logic Design” by RD Sudhaker Samuel

“Digital Logic Applications and Design” by John M Yarbrough, 2011 edition

73

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Module 5

HDL and Data Flow Management

Structure
5.1 Objevtive
5.2 Introduction
5.3 HDL: A brief history of HDL,
5.4 Structure of HDL Module,
5.5 Operators, Data types, Types of Descriptions, Simulation and synthesis
5.6 Brief comparison of VHDL and Verilog.
5.7 Data-Flow Descriptions: Highlights of Data flow descriptions
5.8 Structure of data-flow description,
5.9 Data type-vectors
5.10 Outcome
5.11 Future Readings

5.1 Objective

• The programming language will reduce the size compared to building up the circuit
• Different types of programming used for represent the digital circuits
• Usage of different programming language based on requirement.
• To learn and apply VHDL and HDL code for Digital Circuits.

5.2Introduction to VHDL:

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description
Language. In the mid-1980’s the U.S. Department of Defense and the IEEE sponsored
the development of this hardware description language with the goal to develop very
high-speed integrated circuit. It has become now one of industry’s standard languages
used to describe digital systems.
The other widely used hardware description language is Verilog. Both are powerful
languages that allow you to describe and simulate complex digital systems. A third HDL
language is ABEL (Advanced Boolean Equation Language) which was specifically
designed for Programmable Logic Devices (PLD). ABEL is less powerful than the other
two languages and is less popular in industry

5.3 VHDL versus conventional programming languages
(1) A hardware description language is inherently parallel, i.e. commands, which
correspond to logic gates, are executed (computed) in parallel, as soon as a new input
arrives.
(2) A HDL program mimics the behavior of a physical, usually digital, system.
(3) It also allows incorporation of timing specifications (gate delays) as well as to
describe a system as an interconnection of different components.

Levels of representation and abstraction
A digital system can be represented at different levels of abstraction [1]. This keeps the
description and design of complex systems manageable. Figure 1 shows different levels
of abstraction.

74

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Figure 1: Levels of abstraction: Behavioral, Structural and Physical

The highest level of abstraction is the behavioral level that describes a system in terms
of what it does (or how it behaves) rather than in terms of its components and
interconnection between them. A behavioral description specifies the relationship
between the input and output signals. This could be a Boolean expression or a more
abstract description such as the Register Transfer or Algorithmic level.
As an example, let us consider a simple circuit that warns car passengers when the door is
open or the seatbelt is not used whenever the car key is inserted in the ignition lock At the
behavioral level this could be expressed as,
Warning = Ignition_on AND (Door_open OR Seatbelt_off)
The structural level, on the other hand, describes a system as a collection of gates and
components that are interconnected to perform a desired function. A structural
description could be compared to a schematic of interconnected logic gates. It is a
representation that is usually closer to the physical realization of a system. For the
example above, the structural representation is shown in Figure 2 below.

Figure 2: Structural representation of a “buzzer” circuit.

VHDL allows to describe a digital system at the structural or the behavioral level.
The behavioral level can be further divided into two kinds of styles: Data flow and
Sequential. The dataflow representation describes how data moves through the system.
This is typically done in terms of data flow betwee rnegisters (Register Transfer level).

75

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

The data flow model makes use of concurrent statements that are executed in parallel as
soon as data arrives at the input. On the other hand, sequential statements are executed
in the sequence that they are specified. VHDL allows both concurrent and sequential
signal assignments that will determine the manner in which they are executed.
Mixed level design consists both behavioral and structural design in one block diagram.

5.4 Basic Structure of a VHDL file

(a) Entity
A digital system in VHDL consistosf a design entity that can contain other entities that

are then considered components of the top-level entity. Each entity is modeled by an entity
declaration and an architecture body. One can consider the entity declaration as the
interface to the outside world that defines the input and output signals, while the
architecture body contains the description of the entity and is composed of interconnected
entities, processes and components, all operating concurrently, as schematically shown in
Figure 3 below. In a typical design there will be many such entities connected together to
perform the desired function.
 A VHDL entity consisting of an interface (entity declaration) and a body
(architectural description).

a. Entity Declaration
The entity declaration defines the NAME of the entity and lists the input and output
ports. The general form is as follows,
entity NAME_OF_ENTI

TY
is [generic generic_declarations);]

port (signal_names: mod
e

type;

signal_names:
:
signal_names:

mod
e

mod
e

type;

type);

end [NAME_OF_ENTITY] ;

An entity always starts with the keyword entity, followed by its name and the keyword
is. Next are the port declarations using the keyword port . An entity declaration always
ends with the keyword end, optionally [] followed by the name of the entity.

76

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Figure 3: Block diagram of Full Adder
Example
entity

1:
FULLADDER
is

-- (After a double minus sign (-) the rest of
-- the
--

line is treated as a comment)

-- Interface description of FULLADDER
port (x, y, Ci: in bit;
S, CO:

out bit);

end FULLADDER;
The module FULLADDER has five interface ports. Three of them are the input ports x, y
and Ci indicated by the VHDL keyword in. The remaining two are the output ports S
and
CO indicated by out. The signals going through these ports are chosen to be of the type
bit . The type bit consists of the two characters '0' and '1' and represents the binary logic
values of the signals.
∉ The NAME_OF_ENTITY is a user-selected identifier

signal_names consists of a comma separated list of one or more user-selected identifiers that
specify external interface signals.

∉ mode: is one of the reserved words to indicate the signal direction:

o in – indicates that the signal is an input
o out – indicates that the signal is an output of the entity whose value
can only be read by other entities that use it.
o buffer – indicates that the signal is an output of the entity whose value
can be read inside the entity’s architecture
o inout – the signal can be an input or an output.
∉ type: a built-in or user-defined signal type. Examples of types are bit,
bit_vector, Boolean, character, std_logic, and stc_ulogic.
o bit – can have the value 0 and 1
o bit_vector – is a vector of bit values (e.g. bit_vector (0 to 7)
o std_logic, std_ulogic, std_logic_vector, std_ulogic_vector: can have 9
values to indicate the value and strength of a signal. Std_ulogic and

77

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

std_logic are preferred over the bit or bit_vector types.
o boolean – can have the value TRUE and FALSE
o integer – can have a range of integer values
o real – canhave a range of real values
o character – any printing character
o time – to indicate time
∉ generic: generic declarations are optional
Example 2:

Example 3:

entity mux4_to_1 is
port (I0,I1,I2,I3: in std_logic;

78

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

S: in std_logic_vector(1downto 0);

79

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

y: out std_logic);
end mux4_to_1;
Example 4:
D Flip-Flop:

 entity dff_sr is

port (D,CLK,S,R: in std_logic;
Q,Qb: out std_logic);
end dff_sr;
Architecture body
The architecture body specifies how the circuit operates and how it is implemented. As
discussed earlier, an entity or circuit can be specified in a variety of ways, such as
behavioral, structural (interconnected components), or a combination of the above.
The architecture body looks as follows,
architecture architecture_name of NAME_OF_ENTITY is
-- Declarations
-- components declarations
-- signal declarations
-- constant
-- function

declarations
declarations

-- procedure declarations
-- type
:

declarations

begin
-- Statements
:
end architecture_name;
The types of Architecture are:
(a) The behavioral Model
(b) Structure Model
(c) Mixed Model
(a) Behavioral model
The architecture body for the example of Figure 2, described at the behavioral level, is
given below,

80

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Example 1:
architecture
begin

behavioral of BUZZER is

WARNING
<=

(not DOO
R

and IGNITION) or (not SBEL
T

and

IGNITION);
end behavioral;
The header line of the architecture body defines the architecture name, e.g. behavioral,
and associates it with the entity, BUZZER. The architecture name can be any legal
identifier. The main body of the architecture starts with the keyword begin and
gives the Boolean expression of the function. We will see later that a b haevioral model
can be described in several other ways. The “<=” symbol represents an assignment
operator and assigns the value of the expression on the right to the signal on the left. The
architecture body ends with an end
Example 2:

keyword followed by the architecture name.

The behavioral description of a 3 input AND gate is shown below.
entity AND3 is
port (in1, in2, in3: in std_logic;
out1: out std_logic);
end AND3;
architecture

behavioral_2 of AND3is

81

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

begin
out1 <= in1 and in2 and in3;
end behavioral_2;
Example 3:
entity XNOR2 is
port (A, B: in std_logic;
Z: out std_logic);
end XNOR2;
architecture behavioral_xnor of XNOR2 is
-- signal declaration (of internal signals X, Y)
signal X, Y:
begin

std_logic;

X <= A and B;
Y <

=
(not A) and (not B);

Z <= X or Y;
End behavioral_xnor;
Example 4:
SR Flip Flop:
entity SRFF is
port (S, R: in std_logic;
Q, Qb: out std_logic);
end SRFF;
architecture
begin

behavioral_2 of SRFF is

Q <
=

NO
T

(S and Qb);

Qb <= NOT (R and Q);
end behavioral_2;
The statements in the body of the architecture make use of logic operators. In addition,
other types of operators including relational, shift, arithmetic are allowed as well.
Concurrency
The signal assignments in the above examples are concurrent statements. This implies
that the statements are executed when one or more of the signals on the right hand side
change their value (i.e. an event occurs on one of the signals).
In general, a change of the current value of a signal is called an event. For instance,
when the input S (in SR FF) changes, the first expression gets evaluated, which changes
the value of Q, change in Q in turn triggers second expression and evaluates Qb. Thus Q
and Qb are updated concurrently.
There may be a propagation delay associated with this change. Digital systems are
basically data-driven and an event which occurs on one signal will lead to an event
on another signal, etc. Hence, the execution of the statements is determined by the
flow of signal values. As a result, the order in which these statements are given does
not matter (i.e., moving the statement for the output Z ahead of that for X and Y does
not change the outcome). This is in contrast to conventional, software programs that
execute the statements in a sequential or procedural manner.
Example 5

82

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

architecture
begin

CONCURR
ENT

of FULLADDER is

S <
=

x xor y xor Ci after 5 ns;

CO
<=

(x and y)

or (y and Ci) or (x and Ci) after 3 ns;

83

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Example2:
architecture CONCURRENT_VERS

ION2
of FULLADDER is

signal
begin

PROD1
,

PROD2
,

PROD
3

: bit;

SUM
<=

A xor B xor C; -- statement 1

CARR
Y

<=
PROD1

or PROD2 or PROD3
;

-- statement 2

PRO
D1
PRO
D2
PRO
D3

<=
A
<= B
<=
A

and
and
and

B; --
C; --
C; --

statement 3
statement 4
statement 5

end CONCURRENT_VERSION2;
(a) Concurrent statement: In VHDL With select and When else statements are called
as concurrent statements and they do not require Process statement
Example 1: VHD

L
code for 4:1 multiplexor

library ieee;
use ieee.std_logic_1164.all;
entity Mux is
port (I: in std_logic_vector(3 downto 0);
S: in std_logic_vector(1 downto 0);
y: out std_logic);
end Mux;
-- architecture using logic expression
architecture
begin

behv1 of Mux is

y<= (not(s(0)) and not(s(1)) and I(0)) or(s(0) and not(s(1))
and I(1)) or (not(s(0)) and s(1) and I(2))or (s(0) and s(1) and
I(3));
end behv1;
-- Architecture using when..else:
architecture
begin

behv2 of Mux is

y <= I(0) when S="00" else
I(1)
I(2)
I(3)

whe
n
whe
n
whe
n

S="01"
S="10"
S="11"

else
else
else

‘Z’ ;

84

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

end behv2;
-- architecture using with select statement
architecture
begin

behv3 of Mux is

with s select
y<=i(0) when “00”,
i(1)
i(2)
i(3)

whe
n
whe
n
whe
n

“01”,
“10”,
“11”,

‘Z’ when others;
end behv3;
Note: ‘Z’ high impedence state should be entered in capital Z
Example 2: SR flipflop using when else statement
entity SRFF is
port (S, R: in bit;
Q, QB: inout bit);
end RSFF;
architecture
begin

beh of RSFF is

Q <= Q when S= ‘0’ and R = ‘0’ else
‘0’
‘1’

when S
when S

= ‘0’
= ‘1’

and R
and R

= ‘1’
= ’0’

else
else

‘Z’;
QB <= not(Q);
end beh;
The statement WHEN…..ELSE conditions are executed one at a time in sequential order
until the conditions of a statement are met. The first statement that matches the conditions
required assigns the value to the target signal. The target signal for this example is the
local signal Q. Depending on the values of signals S and R, the values Q,1,0 and Z are
assigned to Q.
If more than one statements conditions match, the first statement that matches does
the assign, and the other matching state.
In with …select statement all the alternatives arte checked simultaneously to find a
matching pattern. Therefore the with … select must cover all possible values of the
selector
Structural Descriptions
A description style where different components of an architecture and their
interconnections are specified is known as a VHDL structural description. Initially, these
components are declared and then components' instances are generated or instantiated. At
the same time, signals are mapped to the components' ports in order to connect them like
wires in hardware. VHDL simulator handles component instantiations as concurrent
assignments.
Syntax:
component declaration:

85

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

component
[generic

component_name
(generic_list:

type_name

[:=

expression] {;

generic_list: type_name [:= expression]});]
[port (signal_list: in|out|inout|buffer type_name {;
signal_list: in|out|inout|buffer type_name});]
end component;

Component instantiation:
component_label: component_name port ma

p
(signal_mapping);

The mapping of ports to the connecting signals during the instantiation can be done
through the positional notation. Alternatively, it may be done by using the named
notation.
If one of the ports has no signal connected to it (this happens, for example, when there
are unused outputs), a reserved word open may be used.
Example 1:
signal_mapping: declaration_name => signal_name.
entity RSFF is
port (SET, RESET: in bit;
Q,
end

QBAR:
RSFF;

inout bit);

architecture NETLIS
T

of RSFF is

component NAND2
port (A, B: in bit; C: out bit);
end component;
begin
U1: NAN

D2
port ma

p
(SET, QBA

R,
Q);

U2: NAN
D2

port ma
p

(Q, RESET
,

QBAR);

end NETLIST;
--- named notation instantiation: ---
U1: NAN

D2
port map (A => SET, C => Q, B => QBAR);

Figure 1: Schematic of SR FF using NAND Gate

The lines between the first and the keyword begin are a component declaration. It

86

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

describes the interface of the entity nand_gate that we would like to use as a component
in (or part of) this design. Between the begin and end keywords, the statements define
component instances.
There is an important distinction between an entity, a component, and a component
instance in VHDL.
The entity describes a design interface, the component describes the interface of an entity
that will be used as an instance (or a sub-block), and the component instance is a distinct
copy of the component that has been connected to other parts and signals.
In this example the component nand_gate has two inputs (A and B) and an output ©.
There are two instances of the nand_gate compone nt in this architectureoc rresponding to
the two nand symbols in the schematic. The first instance refers to the top nand gate in

the schematic and the statement is called the component instantiation statement. The
first word of the component instantiation statement (u1:nand2) gives instance a name, u1,
and specifies that it is an instance of the component nand_gate. The next words describes
how the component is connected to the set of the design using the port map clause.
The port map clause specifies what signals of the design should be connected to the
interface of the component in the same order as they are listed in the component
declaration. The interface is specified in order as A, B and then C, so this instance
connects set to A, QBAR to B and Q to C. This corresponds to the way the top gate in the
schematic is connected. The second instance, named n2, connects RESET to A, Q to A,
and QBAR to C of a different instance of the same nand_gate component in the same
manner as shown in the schematic.

The structural description of a design is simply a textual description of a schematic. A list of
components and there connections in any language is also called a netlist. The structural
description of a design in VHDL is one of many means of specifying netlists

87

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

.

Example 2: Fou
r

Bit Adder – Illustrating a structural VH
DL

model:

Figure 2: 4-bit Adder using four Full Adders.
-- Example of a four bit adder
library ieee;
use ieee.std_logic_1164.all;
-- definition of a full adder
entity FULLADDER is
port (x, y, ci: in std_logic;
s, co: out std_logic);
end FULLADDER;
architecture
begin

fulladder_behav of FULLADDER is

s <= x xor y xor ci ;
co <= (x and y) or (x and ci)or(y and ci));
end fulladder_behav;

88

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

-- 4-bit adder
library ieee;
use ieee.std_logic_1164.all;
entity FOURBITADD is
port (a, b: in std_logic_vector(3 downto 0);
Cin : in std_logic;
sum: out std_logic_vector (3 downto 0);
Cout: out std_logic);
end FOURBITADD;
architecture fouradder_structure of FOURBITADD is
signal c: std_logic_vector (4 downto 0);
component FULLADDER
port (x, y, ci: in std_logic;
s, co: out std_logic);
end component;
begin
FA0: FULLADDER
port ma

p
(a(0), b(0), Cin, sum(0), c(1));

FA1: FULLADDER
port ma

p
(a(1), b(1), C(1), sum(1), c(2));

FA2: FULLADDER
port ma

p
(a(2), b(2), C(2), sum(2), c(3));

FA3: FULLADDER
port ma

p
(a(3), b(3), C(3), sum(3), c(4));

Cout <= c(4);
end fouradder_structure;
We needed to define the internal signals c (4 downto 0) to indicate the nets that connect
the output carry to the input carry of the next full adder. For the first input we used the
input signal Cin. For the last carry we defined c (4) as an internal signal. We could not
use the output signal Cout since VHDL does not allow the use of outputs as internal
signals! For this reason we had to define the internal carry c(4) and assign c(4) to the
output carry signal Cout.

5.5 Operators

(a) VHDL Operators
VHDL supports different classes of operators that operate on signals, variables and
constants. The different c lasses ofpeorators are summarized below.

89

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

The order of precedence is the highest for the operators of class 7, followed by class 6
with the lowest prec dence for class 1. Unless parentheses are used, the operators with
the highest precedence are applied first. Operators of the same class have the same
precedence and are applied from left to right in an expression. As an example, consider
the following std_ulogic_vectors, X (=’010’), Y(=’10’), and Z (‘10101’). The expression
not X & Y xor Z rol 1
is equivalent to ((not X) & Y) xor (Z rol 1) = ((101) & 10) xor (01011) =(10110) xor
(01011) = 11101. The xor is executed on a bit-per-bit basis.
1. Logic operators
The logic operators (and, or, nand, nor, xor and xnor) are defined for the “bit”,
“boolean”, “std_logic” and “std_ulogic” types and their vectors. They are used to define
Boolean logic expression or to perform bit-per-bit operations on arrays of bits. They give
a result of the same type as the operand (Bit or Boolean). These operators can be applied
to signals, variables and constants.
Notice that the nand and nor operators are not associative. One should use parentheses in
a sequence of nand or nor operators to prevent a syntax error:
X nand Y nand Z will give a syntax error and should be written as (X nand Y) nand Z.
2. Relational operators
The relational operators test the relative values of two scalar types and give as result a
Boolean output of “TRUE” or “FALSE”.

90

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Notice that symbol of the operator “<=” (smaller or equal to) is the same one as the
assignment operator used to assign a value to a signal or variable. In the following
examples the first “<=” symbol is the assignment operator. Some examples of relational
operations are:
variable STS : Boolean;
constant A : integer :=24;
constant B_COUNT : integer :=32;
constant C : integer :=14;
STS <= (A < B_COUNT) ; -- will assign the value “TRUE” to STS
STS <= ((A >= B_COUNT) or (A > C)); -- will result in “TRUE”
STS <= (std_logic (‘1’, ‘0’, ‘1’) < std_logic(‘0’, ‘1’,’1’));--makes STS “FALSE”
type new_std_logic is (‘0’, ‘1’, ‘Z’, ‘-‘);

variable A1: new_std_logic :=’1’;
variable A2: new_std_logic :=’Z’;
STS <= (A1 < A2); will result in “TRUE” since ‘1’ occurs to the left of ‘Z’.
For discrete array types, the comparison is done on an element-per-element basis, starting
from the left towards the right, as illustrated by the last two examples.

3. Shift operators

Thesepeorators perform a bit-wise shift or rotate operation on a one-dimensional array of
elements of the type bit (or std_logic) or Boolean.

91

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

The operand is on the left of the operator
side of the operator. As an example,

andhet number (integer) of shifts is on the right

variable NUM1 :bit_vector := “10010110”;
NUM1 srl 2;
will result in the number “00100101”.
When a negative integer is given, the opposite action occurs, i.e. a shift to the left will be
a shift to the right. As an example
NUM1 srl –2 would be equivalent to NUM1 sll 2 and give the result “01011000”.
Other examples of shift operations are for the bit_vector A = “101001”
variable A: bit_vector :=”101001”;

92

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

4. Addition operators

The addition operators are used to perform arithmetic operation (addition and
subtraction) on operands of any numeric type. The concatenation (&) operator is used to
concatenate two vectors together to make a longer one. In order to use these operators
one has to specify the ieee.std_logic_unsigned.all or std_logic_arith package package in
addition to the ieee.std_logic_1164 package.

An example of concatenation is the grouping of signals into a single bus [4].
signal MYBUS :std_log ic_vectro (15 downto 0);
signal STATUS :std_logic_vector (2 downto 0);
signal RW, CS1, CS2 :std_logic;
signal MDATA :std_logic_vector (0 to 9);
MYBUS <= STATUS & RW & CS1 & CS2 & MDATA;
Other examples are
MYARRAY (15 downto 0) <= “1111_1111” & MDATA (2 to 9);
NEWWORD <= “VHDL” & “93”;
The first example results in filling up the first 8 leftmost bits of MYARRAY with 1’s and
the rest with the 8 rightmost bits of MDATA. The last example results in an array of
characters “VHDL93”.
Example:

93

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Signal a: std_logic_vector (3 downto 0);
Signal b: std_logic_vector (3 downto 0);
Signal y:std_logic_vector (7 downto 0);
Y<=a & b;

5. Unary operators
The unary operators “+” and “-“ are used to specify the sign of a numeric type.

6. Multiplying operators
The multiplying operators are used to perform mathematical functions on numeric types
(integer or floating point).

The multiplication operator is also defined when one of the operands is a physical type
and the other an integer or real type.
The remainder (rem) and modulus (mod) are defined as follows:
A rem B = A –(A/B)*B (in which A/B in an integer)

94

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

A mod B = A – B * N (in which N is an integer)
The result of the rem operator has the sign of its first operand while the result of the mod

operators has the sign of the second operand.
Some examples of these operators are given below.
11 rem 4 results in 3
(-11) rem 4 results in -3
9 mod 4 results in 1
7 mod (-4) results in –1 (7 – 4*2 = -1).
7. Miscellaneous operators
These are the absolute value and exponentation operators that can be applied to numeric
types. The logical negation (not) results in the inverse polarity but the same type.

VHDL data types:
To define new type user must create a type declaration. A type declaration defines the
name of the type and the range of the type.
Type declarations are allowed in
(i) Package declaration (ii) Entity Declaration (iii) Architecture Declaration
(iv)Subprogram Declaration (v) Process Declaration

95

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Enumerated Types:
An Enumerated type is a very powerful tool for abstract modeling. All of the values of an
enumerated type are user defined. These values can be identifiers or single character
literals.
An identifier is like a name, for examples: day, black, x
Character literals are single characters enclosed in quotes, for example: ‘x’, ‘I’, ‘o’
Type Fourval is (‘x’, ‘o’, ‘I’, ‘z’);
Type color is (red, yello, blue, green, orange);
Type Instruction is

s
(add, sub, lda, ldb, sta, stb, outa, xfr);

96

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Real type example:
Typ
e

input level is range -10.0 to +10.0

Typ
e

probability is range 0.0 to 1.0;

Typ
e

W_Da
y

is (MON, TUE
,

WE
D,

THU
,

FRI, SAT
,

SUN);

type dollars is range 0 to 10;

variable day: W_Day;
variable Pkt_money:Dollars;
Case
Whe
n

Day is
TUE
=>

pkt_money:=6;

Whe
n

M
ON

OR
WED=>

Pkt_money:=2;

Whe
n
End

others
case;

=> Pkt_money:=7;

Example for enumerated type - Simple Microprocessor model:
Package instr is
Type
End

instruction is
instr;

(add, sub, lda, ldb, sta, stb, outa, xfr);

Use work.instr.all;
Entity mp is
PO
RT

(instr: in Instruction;

Addr: in Integer;
Data: inout integer);
End mp;
Architecture mp
Begin

of mp is

Process (instr)
type reg is array(0 to 255) of integer;
variable
variable
begin

a,b:
reg:

integer;
reg;

case instr is
whe
n
whe
n
whe
n
whe
n
whe
n

lda =>
ldb =>
add =>
sub =>
sta =>

a:=data;
b:=data;
a:=a+b;
a:=a-b;
reg(addr)

:= a;

97

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

whe
n

stb => reg(addr):= b;

whe
n
whe
n
end

outa =>
xfr =>

case;

data
a:=b;

:= a;

end
end

process;
mp;

Physical types:
These are used to represent real world physical qualities such as length, mass, time and
current.
Type is range to
Units identifier;
{(identifier=physical literal;)}
end units identifier;
Examples:
(1) Typ
e

resistance is range 0 to 1E9

units
ohms;
kohms =

1000ohms;

98

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Mohms = 1000kohms;
end units;
(2) Typ
e units
na;

current is range 0 to 1E9

ua =
ma =
a =

1000na;
1000ua;

1000ma;
end units;

Composite Types:
Composite types consist of array and record types.
∉ Array types are groups of elements of same type
∉ Record allow the grouping of elements of different types
∉ Arrays are used for modeling linear structures such as ROM, RAM
∉ Records are useful for modeling data packets, instruction etc.
∉ A composite type can have a value belonging to either a scalar type, composite type
or an access type.
Array Type:
Array type groupasre one or more elements of the same type together as a single object.
Each element of the array can be accessed by one or more array indices.
Typ
e

data-bus is array (0to 31) of BIT;

Variable x:
Variable y:

data-bus;
bit;

Y :=
Y :=

x(0);
x(15);

Typ
e

address_word is array (0 to 63) of BIT;

Typ
e

data_word is array (7 downto 0) of std_logic;

Typ
e

ROM
is

array (0 to 255) of data_word;

We can declare array objects of type mentioned above as follows:
Variable ROM_data: ROM;
Signal Address_bus: Address_word;
Signal word: data_word;
Elements of an array can be accessed by specifying the index values into the array.
X<= Address_bus(25); transfers 26th element of array Address_bus to X.
Y := ROM_data(10)(5); transfers the value of 5th element in 10th row.
Multi dimentional array types may also be defined with two or more dimensions. The
following example defines a two-dimensional array variable, which is a matrix of
integers with four rows and three columns:
Type matrix4x3 is array (1 to 4, 1 to 3) of integer;
Variable matrixA: matrix4x3 := ((1,2,3), (4,5,6), (7,8,9), (10,11,12));
Variable m:integer;
The viable matrixA, will be initialized to
1 2 3

99

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

4 5 6
7 8 9
10 11 12
The array element matrixA(3,2) references the element in the third row and second
column, which has a value of 8.
m := matrixA(3,2); m gets the value 8

Record Type:
Record Types group objects of many types together as a single object. Each element of
the record can be accessed by its field name.
Record elements can include elements of any type including arrays and records.
Elements of a record can be of the same type or different types.
Example:
Typ
e

optype is (add, sub, mpy, div, cmp);

Type instruction is
Record
Opcode :

optype;

Src
Dst

: integer;
: integer;

End record;

Structure of Verilog module:

module module_name(signal_names)
Signal_type signal_names;
Signal_type signal_names;
Aasign statements
Assign statements
Endmodule_name

Verilog Ports:
� Input: The port is only an input port.I. In any assignment statement, the port

should appear only on the right hand side of the statement
� Output: The port is an output port. The port can appear on either side of the

assignment statement.
� Inout: The port can be used as both an input & output. The inout represents a

bidirectional bus.
Verilog Value Set:

� 0 represents low logic level or false condition

� 1 represents high logic level or true condition

� x represents unknown logic level

100

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

� z represents high impedance logic level

Verilog Operators
Operators in Verilog are the same as operators in programming languages. They take two
values and compare or operate on them to yield a new result. Nearly all the operators in
Verilog are exactly the same as the ones in the C programming language.

Operator Type
Operator

Symbol

Operation

Performed

 Arithmetic * Multiply

 / Division

 + Addition

 - Subtraction

 % Modulus

 + Unary plus

 i Unary minus

 Relational > Greater than

 < Less Than

>=

Greater than or equal to

 <= Less than or equal to

 Equality == Equality

 != Inequality

 Logical ! Logical Negation

 && Logical And

 || Logical Or

 Shift >> Right Shift

 << Left Shift

 Conditional ? Conditional

 Reduction ~ Bitwise negation

101

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

 ~& Bitwise nand

 | Bitwise or

 ~| Bitwise nor

 ^ Bitwise xor

 ^~ Bitwise xnor

 ~^ Bitwise xnor

Concatenation {}

102

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

103

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Examples:
x = y + z; //x will get the value of y added to the value of z
x = 1 >> 6; //x will get the value of 1 shifted right by 5 positions
x = !y //x will get the value of y inverted. If y is 1, x is 0 and vise versa

Verilog Data Types:
Nets (i)
an be thought as hardware wires driven by logic
Equal z when unconnected
Various types of nets
wire
wand
wor
tri

(wired-AND)
(wired-OR)
(tri-state)

In following examples: Y is evaluated, automatically, every time A or B changes

Nets (ii)

A

B
 Y

wire Y; // declaration
assign Y = A & B;

wand Y; // declaration

assign Y = A; assign Y = B;

A

Y
B

104

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

wor Y; // declaration

assign Y = A; assign Y = B;

dr

A Y

tri Y;

// declaration

Registers:

assign Y = (dr) ? A : z;

� Variables that store values
� Do not represent real hardware but ..
� .. real hardware can be implemented with registers
� Only one type: reg

reg A, C; // declaration
// assig
A = 1;

nmentasre always done inside a procedure

C = A; // C gets the logical value 1
A = 0; // C is still 1
C = 0; // C is now 0

� Register values are updated explicitly!!
Vectors:
� Represent buses

wire [3:0] busA;
reg [1:4] busB;
reg [1:0] busC;

� Left number is MS bit
� Slice management

� Vector assignment (by position!!)

busC[1] = busA[2];
busC[0] = busA[1];

Integer & Real Data Types:

busB[1] = busA[3];
busB[2] = busA[2];
busB[3] = busA[1];
busB[4] = busA[0];

� Declaration
integer i, k;
real r;

Use as registers (inside procedures)

105

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

i = 1; // assignments occur inside procedure
r = 2.9;
k = r; // k is rounded to 3

� Integers are not initialized!!
� Reals are initialized to 0.0

Parameters:
� Parameters represents global constants.They are declared by the predefined word

parameter.
module comp_genr(X,Y,XgtY,XltY,XeqY);
parameter N = 3;
input [N :0] X,Y;
output XgtY,XltY,XeqY;
wire [N:0] sum,Yb;

Time Data Type:

� Special data type for simulation time measuring
� Declaration

time my_time;
� Use inside procedure

my_time = $time; // get current sim time
� Simulation runs at simulation time, not real time
Arrays (i):

Syntax
integer count[1:5]; // 5 integers
reg var[-15:16]; // 32 1-bit regs
reg [7:0] mem[0:1023]; // 1024 8-bit regs

Accessing array elements
Entire element: mem[10] = 8’b 10101010;
Element subfield (needs temp storage):
reg [7:0] temp;
..
temp = mem[10];
var[6] = temp[2];
Strings: Implemented
with regs:

reg [8*13:1] string_val; // can hold up to 13 chars
..
string_val = “Hello Verilog”;
string_val = “hello”; // MS Bytes are filled with 0
string_val = “I am overflowed”; // “I ” is truncated

Escaped chars:
\n newline
\t tab

106

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

%% %
\\ \
\“ “
Styles(Types) of Descriptions:

� Behavioral Descriptions
� Structural Descriptions
� Switch – Level Descriptions
� Data – Flow Descriptions
� Mixed Type Descriptions
Behavioral Descriptions:
VHDL Behavioral description
entity half_add is

port (I1, I2 : in bit; O1, O2 : out bit);
end half_add;
architecture behave_ex of half_add is

--The architecture consists of a process construct
begin

process (I1, I2)
--The above statement is process statement

O1 <= I1 xor I2 after 10 ns;
O2 <= I1 and I2 after 10 ns;

end process;
end behave_ex;
Verilog behavioral Description:
module half_add (I1, I2, O1, O2);

input I1, I2;
output O1, O2;
reg O1, O2;
always @(I1, I2)
//The above abatement is always
//The module consists of always construct
begin

#10 O1 = I1 ^ I2;
#10 O2 = I1& I2;

end
endmodule

VHDL Structural Descriptions:
entity system is

port (a, b : in bit;
sum, cout : out bit);

end system;
architecture struct_exple of system is
component xor2
--The above statement is a component statement

port(I1, I2 : in bit;
O1 : out bit);

begin

107

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

end component;
component and2

port(I1, I2 : in bit;
O1 : out bit);

end component;
begin

X1 : xor2 port map (a, b, sum);
A1 : and2 port map (a, b, cout);

end struct_exple;
Verilog Structural Description:
module system(a, b, sum, cout);

input a, b;
output sum, cout;

xor X1(sum, a, b);
//The above statement is EXCLUSIVE-OR gate

and a1(cout, a, b);
//The above statement is AND gate
endmodule

Switch Level Descriptions:
VHDL Description:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Inverter is

Port (y : out std_logic; a: in std_logic);
end Inverter;
architecture Invert_switch of Inverter is
component nmos
--nmos is one of the key words for switch-level.
port (O1: out std_logic; I1, I2 : in std_logic);
end component;
component pmos
--pmos is one of the key words for switch-level.
port (O1: out std_logic ;I1, I2 : in std_logic);
end component;
for all: pmos use entity work. mos (pmos_behavioral);
for all: nmos use entity work. mos (nmos_behavioral);
--The above two statements are referring to a package mos
--See details in Chapter 5
constant vdd: std_logic := '1';
constant gnd : std_logic:= '0';
begin
p1 : pmos port map (y, vdd, a);
n1: nmos port map (y, gnd, a);
end Invert_switch;

108

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Verilog switch – Level Description:
module invert(y,a);
input a;
output y;
supply1 vdd;
supply0 gnd;
pmos p1(y, vdd, a);
nmos n1(y, gnd, a);
--The above two statement are using the two primitives pmos and nmos
endmodule
Data – Flow Descriptions:
VHDL Data – Flow Description:
entity halfadder is
port (a,b: in bit;

s,c: out bit);
end halfadder;
architecture HA_DtFl of halfadder is

begin
s <= a xor b;
c <= a and b;

end HA_DtFl;
Verilog Data – Flow Description:
module halfadder (a,b,s,c);

input a;
input b;
output s;
output c;

assign s = a ^ b;
assign c = a & b;

endmodule

5.6 Comparision of VHDL & Verilog:
� Data Types
VHDL: Types are in built in or the user can create and define them.User defined
types give the user a tool to write the code effectively. VHDL supports
multidimensional array and physical type.
Verilog: Verilog data types are simple & easy to use. There are no user defined types.
� Ease of Learning
VHDL:Hard to learn because of its rigid type requirements.
Verilog: Easy to learn,Verilog users just write the module without worrying about
what Library or package should be attached.
� Libraries and Packages
VHDL:Libraries and packages can be attached to the standard VHDL
package.Packages can include procedures and functions, & the package can be made
available to any module that needs to use it.

109

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Verilog:No concept of Libraries or packages in verilog.

� Operators
VHDL:An extensive set of operators is available in VHDL,but it does not have
predefined unary operators.
Verilog: An extensive set of operators is also available in verilog. It also has
predefined unary operators.
� Procedures and Tasks
VHDL:Concurrent procedure calls are allowed. This allows a function to be written
inside the procedure’s body.This feature may contribute to an easier way to describe a
complex system.
Verilog:Concurrent task calls are allowed.Functions are not allowed to be written in
the task’s body.

ASSIGNMENT QUESTIONS
1) Explain entity and architecture with an example
2) Explain structure of verilog module with an example
3) Explain VHDL operators in detail.
4) Explain verilog operators in detail.
5) Explain how data types are classified in HDL. Mention the advantages of VHDL data
types over verilog.
6) Mention the types of HDL descriptions. Explain dataflow and behavioral descriptions

7) Describe different types of HDL description with suitable example.
8) Mention different styles (types) of descriptions. Explain mixed type and mixed

language descriptions.
9) Compare VHDL and Verilog
10) Write the result of all shift and rotate operations inVHDL after applying them to a 7

bit vector A = 1001010
11) Explain composite and access data types with an example for each.
12) Discuss different logical operators used in HDL’s

110

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

5.7 DATA FLOW DESCRIPTIONS

Data flow is one type(style) of hardware description.
Facts

∉ Data – flow descriptions simulate the system by showing how the signal flows
from system inputs to outputs.

∉ Signal – assignment statements are con ucrrent. At any simulation time, all signal-
assignment statements that have an event are executed concurrently.

5.8 VHDL Description and structure
entity system is

port (I1, I2 : in bit; O1, O2 : out bit);
end;
architecture dtfl_ex of system is
begin

O1 <= I1 and I2; -- statement 1.
O2 <= I1 xor I2; -- statement 2.

--Statements 1 and 2 are signal-assignment statements

end dtfl_ex;

Verilog Description
module system (I1, I2, O1, O2);

input I1, I2;
output O1, O2;

/*by default all the above inputs and outputs are 1-bit signals.*/

assign O1 = I1&I2; // statement 1
assign O2 = I1^I2; // statement 2

/*Statements 1 and 2 are continuous signal-assignment statements*/
endmodule

Signal Declaration and Assignment Statements:
Syntax:
signal list_of_signal_names: type [:= initial value];
Examples:
signal SUM, CARRY: std_logic;
signal DATA_BUS: bit_vector (0 to 7);
signal VALUE: integer range 0 to 100;

� Signals are updated after a delta delay.
Example:
SUM <= (A xor B);

� The result of A xor B is transferred to SUM after a delay called simulation Delta
which is a infinitesimal small amount of time.

Constant:
Syntax:

111

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

constant list_of_name_of_constant: type [:=initial value] ;

Examples:
constant
constant

RISE_FALL_TME: time := 2 ns;
DELAY1: time := 4 ns;

HDL Code for Half Adder—VHDL and Verilog:

VHDL Half Adder Description

entity halfadder is
port (
a : in bit;
b : in bit;
s : out bit;
c : out bit);
end halfadder;
architecture HA_DtFl of halfadder is
begin

s <= a xor b; -- This is a signal assignment statement.
c <= a and b; -- This is a signal assignment statement.

end HA_DtFl;

Verilog Half Adder Description
module halfadder (a, b, s, c);
input a;
input b;
output s;
output c;
/*The default type of all inputs and outputs is a single bit. */

assign s = a ^ b; /* This is a signal assignment statement;
^is a bitwise xor logical operator. */

assign c = a & b; /* This is a signal assignment statement
& ias bitwise logical “and” operator */

endmodule

112

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

5.8 Data type-vectors

HDL Code of a 2x1 Multiplexer—VHDL and Verilog:

VHDL 2x1 Multiplexer Description :

Fig: 2x1 Multiplexer (a) Logic diagram (b) Logic symbol

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
port (A, B, SEL, Gbar : in std_logic;

Y : out std_logic);
end mux2x1;

architecture MUX_DF of mux2x1 is
signal S1, S2, S3, S4, S5 : std_logic;

Begin

-- Assume 7 nanoseconds propagation delay
-- for all and, or, and not.

st1: Y <= S4 or S5 after 7 ns;
st2: S4 <= A and S2 and S1 after 7 ns;
st3: S5 <= B and S3 and S1 after 7 ns;
st4: S2 <= not SEL after 7 ns;
st5: S3 <= not S2 after 7 ns;
st6: S1 <= not Gbar after 7 ns;
end MUX_DF;

113

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Verilog Description: 2x1 Multiplexer
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;

114

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

output Y;
wire S1, S2, S3, S4, S5;

/* Assume 7 time units delay for all and, or, not.
In Verilog we cannot use specific time units,
such as nanoseconds. The delay here is
expressed in simulation screen units. */

assign #7 Y = S4 | S5; //st1
assign #7 S4 = A & S2 & S1; //st2
assign #7 S5 = B & S3 & S1; //st3
assign #7 S2 = ~ SEL;
assign #7 S3 = ~ S2;
assign #7 S1 = ~ Gbar;
endmodule

//st4
//st5
//st6

HDL Code for a 2x2 Unsigned Combinational Array Multiplier—VHDL and
Verilog:

VHDL 2x2 Unsigned Combinational Array Multiplier De scription :

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mult_arry is

port (a, b : in std_logic_vector(1 downto 0);
P : out std_logic_vector (3 downto 0));

end mult_arry;

architecture MULT_DF of mult_arry is
begin
-- For simplicity propagation delay times are not considered
-- in this example.
P(0) <= a(0) and b(0);
P(1) <= (a(0) and b(1)) x or (a)(1 and b(0));
P(2) <= (a(1) and b(1)) xor ((a(0) and b(1)) and (a(1) and

b(0)));
P(3) <= (a(1) and b(1)) and ((a(0) and b(1)) and (a(1) and

b(0)));

115

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

end MULT_DF;

Verilog 2x2 Unsigned Combinational Array Multiplier Description
module mult_arry (a, b, P);
input [1:0] a, b;
output [3:0] P;
/*For simplicity, propagation delay times are not
considered in this example.*/

assign P[0] = a[0] & b[0];
assign P[1] = (a[0] & b[1]) ^ (a[1] & b[0]);
assign P[2] = (a[1] & b[1]) ^ ((a[0] & b[1]) & (a[1] & b[0]));
assign P[3] = (a[1] & b[1]) & ((a[0] & b[1])& (a[1] & b[0]));
endmodule

HDL Code for a D-Latch—VHDL and Verilog:

VHDL D-Latch Description:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
port (D, E : in std_logic;

Q, Qbar : buffer std_logic);
-- Q and Qbar are declared as buffer because they act as
--both input and output, they appear on the right and left
--hand side of signal assignment statements. inout or
-- linkage could have been used instead of buffer.
end D_Latch;

architecture DL_DtFl of D_Latch is
constant Delay_EorD : Time := 9 ns;
constant Delay_inv : Time := 1 ns;
begin
--Assume 9-ns propagation delay time between
--E or D and Qbar; and 1 ns between Qbar and Q.

116

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Qbar <= (D and E) nor (not E and Q) after Delay_EorD;
Q <= not Qbar after Delay_inv;

end DL_DtFl;

Verilog D-Latch Description:
module D_latch (D, E, Q, Qbar);
input D, E;
output Q, Qbar;

/* Verilog treats the ports as internal ports,
so Q and Qbar are not considered here as
both input and output. If the port is
connected externally as bidirectional,
then we should use inout. */

time Delay_EorD = 9;
time Delay_inv = 1;
assign #Delay

(~E & Q));
o_rED Qbar = ~((E & D) |

assign #Delay_inv Q = ~ Qbar;
endmodule

HDL Code of a 2x2 Magnitude Comparator—VHDL and Verilog:

VHDL 2x2 Magnitude Comparator Description:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity COMPR_2 is
port (x, y : in std_logic_vector(1 downto 0); xgty,

xlty : buffer std_logic; xeqy : out std_logic);
end COMPR_2;

architecture COMPR_DFL of COMPR_2 is
begin
xgty <= (x(1) and not y(1)) or (x(0) and not y(1) and

not y(0)) or
x(0) and x(1) and not y(0));

xlty <= (y(1) and not x(1)) or (not x(0) and y(0)
and y(1)) or

(not x(0) and not x(1) and y(0));
xeqy <= xgty nor xlty;
end COMPR_DFL;

117

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Verilog 2x2 Magnitude Comparator Description
module compr_2 (x, y, xgty, xlty, xeqy);
input [1:0] x, y;
output xgty, xlty, xeqy;
assign xgty = (x[1] & ~ y[1]) | (x[0] & ~ y[1]

& ~ y[0]) | (x[0] & x[1] & ~ y[0]);
assign xlty = (y[1] & ~ x[1]) | (~ x[0] & y[0] & y[1]) |

(~ x[0] & ~ x[1] & y[0]);
assign xeqy = ~ (xgty | xlty);
endmodule

118

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

3-Bit Ripple-Carry Adder Case Study—VHDL and Verilog

VHDL 3-Bit Ripple-Carry Adder Case Study Description

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity adders_RL is

port (x, y : in std_logic_vector (2 downto 0);
cin : in std_logic;
sum : out std_logic_vector (2 downto 0);
cout : out std_logic);

end adders_RL;

--I. RIPPLE-CARRY ADDER

architecture RCarry_DtFl of adders_RL is
--Assume 4.0-ns propagation delay for all gates.
signal c0, c1 : std_logic;
constant delay_gt : time := 4 ns;

begin
sum(0) <= (x(0) xor y(0)) xor cin after 2*delay_gt;

--Treat the above statement as two 2-input XOR.

sum(1) <= (x(1) xor y(1)) xor c0 after 2*delay_gt;

--Treat the above statement as two 2-input XOR.

119

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

sum(2) <= (x(2) xor y(2)) xor c1 after 2*delay_gt;
--Treat the above statement as two 2-input XOR.
c0 <= (x(0) and y(0)) or (x(0) and cin) or (y(0) and cin)

after 2*delay_gt;
c1 <= (x(1) and y(1)) or (x

after 2*delay_gt;
(1) ancd0) or (y(1) and c0)

cout <= (x(2) and y(
after 2*delay_gt;

end RCarry_DtFl;

2)) o(rx(2) and c1) or (y(2) and c1)

Verilog 3-Bit Ripple-Carry Adder Case Study Description
module adr_rcla (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
// I. RIPPLE CARRY ADDER
wire c0, c1;
time delay_gt = 4;
//Assume 4.0-ns propagation delay for all gates.

assign #(2*delay_gt) sum[0] = (x[0] ^ y[0]) ^ cin;
//Treat the above statement as two 2-input XOR.

assign #(2*delay_gt) sum[1] = (x[1] ^ y[1]) ^ c0;
//Treat the above statement as two 2-input XOR.

assign #(2*delay_gt) sum[2] = (x[2] ^ y[2]) ^ c1;
//Treat the above statement as two 2-input XOR.

assign #(2*delay_gt) c0 = (x[0] & y[0]) | (x[0] & cin)
| (y[0] & cin);

assign #(2*delay_gt) c1 = (x[1] & y[1]) | (x[1] & c0)
| (y[1] & c0);

assign #(2*delay_gt) cout = (x[2] & y[2]) | (x[2] & c1)
| (y[2] & c1);

endmodule

120

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

3-Bit Carry-Lookahead Adder Case Study—VHDL and Verilog

VHDL 3-Bit Carry-Lookahead Adder Case Study Description
--II. CARRY-LOOKAHEAD ADDER

architecture lkh_DtFl of adders_RL is

--Assume 4.0-ns propagation delay for all gates
--including a 3-input xor.
signal c0, c1 : std_logic;
signal p, g : std_logic_vector (2 downto 0);
constant delay_gt : time := 4 ns;
begin

g(0) <= x(0) and y(0) after delay_gt;
g(1) <= x(1) and y(1) after delay_gt;
g(2) <= x(2) and y(2) after delay_gt;
p(0) <= x(0) or y(0) after delay_gt;
p(1) <= x(1) or y(1) after delay_gt;
p(2) <= x(2) or y(2) after delay_gt;
c0 <= g(0) or (p(0) and cin) after 2*delay_gt;

c1 <= g(1) or (p(1) and g(0)) or (p(1) and p(0)
and cin) after 2*delay_gt;

cout <= g(2) or (p(2) and g(1)) o
and g(0)) or

rp(2) and p(1)

(p(2) and p(1) and p(0) and nc)i after 2*delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt;
sum(1) <= (p(1) xor g(1)) xor c0 after delay_gt;
sum(2) <= (p(2) xor g(2)) xor c1 after delay_gt;
end lkh_DtFl;

121

Digital System Design 17EE35

Dept. EEE,ATMECE, Mysuru

Verilog 3-Bit Carry-Lookahead Adder Case Study Description
// II. CARRY-LOOKAHEAD ADDER
module lkahd_adder (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
/*Assume 4.0-ns propagation delay for all gates

including a 3-input xor.*/

wire c0, c1;
wire [2:0] p, g;
time delay_gt = 4;
assign #delay_gt g[0] = x[0] & y[0];
assign #delay_gt g[1] = x[1] & y[1];
assign #delay_gt g[2] = x[2] & y[2];
assign #delay_gt p[0] = x[0] | y[0];
assign #delay_gt p[1] = x[1] | y[1];
assign #delay_gt p[2] = x[2] | y[2];
assign #(2*delay_gt) c0 = g[0] | (p[0] & cin);

assign #(2*delay_gt) c1 = g[1] | (p[1] & g[0]) |
(p[1] & p[0] & cin);

assign #(2*delay_gt) cout = g[2] | (p[2] & g[1]) | (p[2] &
p[1] & g[0]) | (p[2] & p[1] & p[0] & cin);

assign #delay_gt sum[0] = (p[0] ^ g[0]) ^ cin;
assign #delay_gt sum[1] = (p[1] ^ g[1]) ^ c0;

assign #delay_gt sum[2] = (p[2] ^ g[2]) ^ c1;
endmodule

122

